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ABSTRACT. We investigate the birational geometry (in the sense of Mori’s program) of the moduli space of rank
2 semistable parabolic vector bundles on a rational curve. We compute the effective cone of the moduli space and
show that all birational models obtained by Mori’s program are also moduli spaces of parabolic vector bundles
with certain parabolic weights.

1. INTRODUCTION

In the last decade, it has been proved that studying the geometry of a moduli space in the viewpoint of
the minimal model program (or Mori’s program) for a moduli space is very fruitful. Mori’s program for a
moduli space M consists of the following steps: 1) Compute the cone of effective divisors Eff(M). 2) For
each divisor D ∈ Eff(M), find the projective model

M(D) := Proj
⊕
m≥0

H0(M,O(bmDc)).

3) Study the moduli theoretic interpretation (if there is) of M(D) and its relation with M .

There are several intensively studied examples. For the moduli spaceMg of stable curves, the famous
Hassett-Keel program is a study of birational models of the formMg(KMg

+ αD) with the boundary D of
singular curves and α ≤ 1. It has been shown that many of these models are indeed moduli spaces of curves
with worse singularities (for a nice overview, see [FS13]). For Hilbert scheme Hilbn(P2) of n points on P2,
many of its birational models appearing in Mori’s program are moduli spaces of Bridgeland stable objects
in Db(P2) with certain stability condition ([ABCH13]). For the moduli space of stable sheaves MH(v) on a
K3 surface X , all flips of MH(v) are moduli spaces of Bridgeland stable objects in Db(X) ([BM14]).

1.1. The main result of the paper. The aim of this paper is to investigate the birational geometry of the
moduli spaceM(~a) of rank 2 semistable parabolic vector bundles of degree 0 on P1, in the sense of Mori’s
program. The moduli functor depends on a parabolic weight ~a, which imposes a certain stability condition.
If we vary ~a, then the moduli space changes. The study of this change has been well understood by many
authors in [Bau91, Ber94, BH95, Tha96, Tha02]. All birational morphisms between them are able to be
described in terms of smooth blow-ups/downs, or variation of GIT. In this paper we revisit these birational
modifications in terms of Mori’s program.

The following is the first main result of this paper, which is the first step of Mori’s program. Let n ≥ 5 be
the number of parabolic points.

Theorem 1.1 (Theorem 6.2). Let ~a be a general parabolic weight such thatM(~a) has the maximal Picard number
n+ 1. Then the effective cone Eff(M(~a)) is polyhedral and there are precisely 2n−1 extremal rays.

Note that the computation of the effective cone of a variety is a hard problem in general. Except toric
varieties, there are few examples of varieties with large Picard number and known effective cone. Among
moduli spaces, most of examples with known effective cone have Picard number ≤ 2 or have a simplicial
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effective cone (for example, the moduli space of n-unordered pointed rational curves M0,n/Sn ([KM13]), the
moduli space of stable maps M0,0(Pd, d) ([CHS08])). Theorem 1.1 provides one highly nontrivial example
of an algebraic variety with completely known non-simplicial effective cone.

After the computation of Eff(M(~a)), the following theorem is a simple consequence of the work of Pauly
on generalized theta divisors ([Pau96]).

Theorem 1.2 (Theorem 7.3). For any divisor D ∈ int Eff(M(~a)), the birational modelM(~a)(D) is isomorphic to
M(~b) for some parabolic weight~b.

Indeed, even in the case that D ∈ ∂Eff(M(~a)), we can describe the projective models as moduli spaces
of parabolic bundles with fewer parabolic points (Remark 7.4). In short, all projective models of M(~a)

appearing in Mori’s program of M(~a) are moduli spaces of parabolic vector bundles with certain degree
and stability condition.

Therefore as opposed to the case of Hilbert schemes and moduli spaces of ordinary stable sheaves, there
are no newly appearing moduli spaces parametrizing objects in (some) derived categories. In this sense,
the (non separated, non connected) moduli stack of rank 2 parabolic bundles over P1 is closed under Mori’s
program.

We may ask a generalized question. It would be interesting if one can show a similar statement for
moduli spaces of an arbitrary rank parabolic bundles over an arbitrary genus g smooth curve.

Question 1.3. Let C be a smooth projective curve. LetMC(r,~a, L) be the moduli space of rank r semistable
parabolic bundles with fixed determinant L over C. Are all birational models ofMC(r,~a, L) appearing in
Mori’s program of the formMC(r′,~b, L′)?

After finishing the first draft of this paper, we recognized that the Cox ring of the moduli space of par-
abolic bundles has been studied by several mathematicians. In [Muk05], Mukai used the moduli space
of rank two, degree one parabolic bundles on P1 with a special parabolic weight to study the finite gen-
eration of certain invariant ring. Recently, Manon showed that the Cox ring of the moduli stack of rank
two parabolic bundles with generic parabolic points is generated by level one and two conformal blocks
([Man09]).

1.2. Outline of the proof. Our approach in attacking this problem was to find an elementary construction
ofM(~a). We show that when ~a is very small, thenM(~a) ∼= (P1)n//LSL2, where L = O(a1, · · · , an) (Propo-
sition 3.5). When ~a becomes large, in Proposition 3.7 we show thatM(~a) is (possibly a flip of) the blow-up
of (P1)n//LSL2 at a smooth point.

The computation of Eff((P1)n//LSL2) is a classical result in invariant theory. We restate the result in
Proposition 4.5. When the Picard number is maximal, Eff((P1)n//LSL2) is a cone over the hypersimplex
∆(2, n).

Now to compute Eff(M(~a)) for a general ~a, it suffices to compute the effective cone of a single point
blow-up of (P1)n//LSL2. To do so, we use the combinatorics of sl2-conformal blocks. Originally, the confor-
mal block was defined by using representations of affine Lie algebra, but it is well-known that there is an
interesting connection with moduli spaces of parabolic vector bundles ([Pau96]). Furthermore, in the sl2-
case, its rich algebraic/combinatorial structure is well understood by the work of many mathematicians,
including Looijenga, Swinarski and B. Alexeev. After introducing two equivalent combinatorial models to
count sl2-conformal blocks, we show that any effective divisor onM(~a) is a nonnegative linear combination
of 2n−1 level one conformal blocks. Thus we obtain Theorem 1.1.
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Finally, in [Pau96], Pauly introduced a natural ample divisor onM(~a) and showed that it is isomorphic
to conformal blocks with certain weights. By using this result, we finish the proof of Theorem 1.2.

1.3. Structure of the paper. The organization of this paper is as follows. In Section 2 we review the defi-
nition and basic properties of moduli spaces of semistable rank 2 parabolic vector bundles. Also we state
some known results on their wall-crossing behavior. In Section 3, we give an elementary construction of
M(~a) as a simple GIT quotient. In Section 4, we compute the Picard group and the effective cone of the
GIT quotient that appeared in the previous section. Section 5 reviews an elementary definition and combi-
natorics of sl2-conformal blocks. In Section 6, we compute Eff(M(~a)) for an effective parabolic weight ~a.
Finally in Section 7, we prove Theorem 1.2.

Notation and conventions. We work over an algebraically closed field C of characteristic 0. In this paper,
we fix n ≥ 3 distinct parabolic points ~p = (p1, · · · , pn) on P1. The notion and combinatorics of parabolic
bundles are significantly simplified for the rank 2 case. So in this paper, our discussions are focused on the
rank 2 case only. We denote the set {1, · · · , n} by [n].

2. PRELIMINARIES ON THE MODULI SPACE OF PARABOLIC VECTOR BUNDLES

In this section, we review some of basics on parabolic vector bundles on P1 and the moduli spaces of
them. After that we review some known results on birational geometry of the moduli spaces. For details
and proofs of the results in this section, see [BH95, MS80, Tha96, Tha02, Yok95].

2.1. Moduli space of parabolic vector bundles. A rank 2 parabolic vector bundle on P1 with parabolic
structure at ~p is a collection (E, {Vi},~a) where

(1) E is a vector bundle of rank 2 over P1;
(2) for each i ∈ [n], Vi ⊂ E|pi is a 1-dimensional subspace;
(3) ~a = (a1, · · · , an) is a sequence of rational numbers such that 0 ≤ ai < 1, called a parabolic weight.

Sometimes we write (E, {Vi},~a) simply as (E, {Vi}), (E,~a) or even E, if there is no confusion. The set
of all possible parabolic weights is W := ([0, 1) ∩ Q)n. The interior of W , which parametrizes positive
parabolic weights, is denoted by W .

If we consider the moduli stack of parabolic vector bundles, it is highly non-separated even if we fix
the rank and the degree of the underlying vector bundle. The notion of (semi)stability of parabolic vector
bundles enables us to obtain a proper open substack.

A parabolic line bundle (E,~b) is simply a pair of line bundle E and a parabolic weight~b = (b1, · · · , bn).
Let (E, {Vi},~a) be a rank 2 parabolic vector bundle on P1. A parabolic subbundle (E′,~b) is a parabolic line
bundle where E′ ⊂ E is a subbundle and

bi =

ai, E′|pi = Vi

0, E′|pi 6= Vi.

A parabolic quotient bundle (E′′,~c) is a parabolic line bundle whereE′′ is a quotient bundle and if q : E →
E′′ is the quotient map,

ci =

ai, q|pi(Vi) 6= 0

0, q|pi(Vi) = 0.
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For a rank 1 or 2 parabolic bundle (E,~a), the parabolic degree of E is

pardeg E = degE +

n∑
i=1

ai.

Finally, for a parabolic bundle E, the parabolic slope of E is defined as

µ(E) =
pardeg E

rankE
.

Definition 2.1. A rank 2 parabolic bundle (E, {Vi},~a) is (semi)stable if for every parabolic subbundle
(E′,~b),

µ(E′) (≤) < µ(E).

We say that two rank 2 semistable parabolic vector bundles are S-equivalent if they have the same factors
in their Jordan-Hölder filtrations. In concrete terms, this equivalence relation is generated by the following:
If (E, {Vi},~a) is semistable and (E′,~b) ↪→ (E, {Vi},~a) is a parabolic subbundle such that µ(E′) = µ(E), then
E ≡ E′ ⊕ E/E′. By definition, if E is stable, then it is S-equivalent to itself only.

LetM(~a, d) be the coarse moduli space of S-equivalent classes of rank 2, degree d, semistable parabolic
vector bundles on P1 with parabolic structure ~a at ~p. We denote M(~a, 0) by M(~a). We denote the open
subvariety ofM(~a) parametrizing stable parabolic vector bundles byM(~a, d)s (orM(~a)s if d = 0).

Theorem 2.2 ([MS80, Theorem 4.1]). For ~a ∈ W , the moduli space M(~a, d) is an irreducible normal projective
variety of dimension n− 3, if it is nonempty.

2.2. Deformation theory of parabolic vector bundles. The deformation theory of parabolic vector bundles
has been worked out by Yokogawa in [Yok95] in great generality.

Let (E, {Vi},~a) and (F, {Wi},~b) be two rank 2 parabolic vector bundles. A bundle morphism f : E → F

is called (strongly) parabolic if f(Vi) = 0 whenever ai (≥) > bi. We shall denote by ParHom(E,E′) and
SParHom(E,E′) the sheaves of parabolic and strongly parabolic morphisms, and by ParHom(E,E′) and
SParHom(E,E′) their global sections respectively. We also use the notation ParEnd(E) := ParHom(E,E)

and ParEnd(E) := ParHom(E,E).

The following fact is a standard consequence of the notion of the stability, as that of ordinary vector
bundles. The proof is identical to that of [Fri98, Proposition 4.7, Corollary 4.8].

Proposition 2.3. Let E and F be stable parabolic bundles such that µ(E) ≥ µ(F ). Then dim ParHom(E,E′) = 1

if E and F are isomorphic, and 0 otherwise. In particular, ParEnd(E) = C · id.

The category of parabolic bundles on P1 is not abelian. However, Yokogawa showed that it is contained
in an abelian category P as a full subcategory using a generalized notion of parabolic sheaves, and P has
enough injective objects. For each parabolic vector bundleE, Exti(E,−) is defined by the i-th right derived
functor of ParHom(E,−) in P .

Lemma 2.4 ([Yok95, Theorem 1.4, 3.6]). Let E1, E2 be two parabolic bundles. Then

Exti(E2, E1) ∼= Hi(ParHom(E2, E1))

for i ≥ 0.

For each parabolic weight ~a, let I~a = {i ∈ [n] | ai 6= 0}. We say that two weights ~b and ~c are comple-
mentary if I~b t I~c defines a partition of {1, · · · , n}. When two parabolic line bundles (E,~b) and (F,~c) have
complementary weights, an extension of (F,~c) by (E,~b) is a short exact sequence of parabolic morphisms

0 // (E,~b) // (G, {Vi},~a)
q
// (F,~c) // 0
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where

ai =

bi, i ∈ I~b
ci, i ∈ I~c

and Vi = E|pi if i ∈ I~b and q(Vi) 6= 0 if i ∈ I~c. It is obvious that (E,~b) (resp. (F,~c)) is a parabolic subbundle
(resp. quotient bundle) of (G, {Vi},~a).

The proof of the following proposition is identical to the arguments in [Fri98, p. 31].

Proposition 2.5. For two parabolic line bundles (E,~b) and (F,~c) which have complementary weights, the isomor-
phism classes, up to scalar multiplications, of nonsplit extensions of F by E are parametrized by PExt1(F,E).

We have a generalized Serre duality for parabolic bundles.

Proposition 2.6 ([Yok95, Proposition 3.7]). For any parabolic bundles E and F , there are natural isomorphisms

Ext1−i(E,F ⊗OP1(n− 2)) ∼= Hi(SParHom(F,E))∨

for i = 0, 1.

Theorem 2.7 ([Yok95, Theorem 2.4]). Let (E, {Vi},~a) be a rank 2 parabolic bundle corresponding to a geometric
point x ofM(~a)s. The Zariski tangent space ofM(~a)s at x is naturally isomorphic to Ext1(E,E). If Ext2(E,E) =

0, thenM(~a)s is smooth at x.

Corollary 2.8. M(~a)s is smooth.

Proof. By Lemma 2.4, Ext2(E,E) ∼= H2(ParHom(E,E)). The latter cohomology is zero since it is an ordi-
nary sheaf cohomology on a curve. �

2.3. Wall crossing. We devote this subsection to showing howM(~a) changes when ~a varies. The birational
map between M(~a) and M(~a′) with two adjacent parabolic weights ~a and ~a′ is studied in [BH95] and
[Tha96, Section 7].

Remark 2.9. In [BH95, Tha96], the authors stated the result in the case that there is only one parabolic point.
But the result is generalized to the case of an arbitrary number of parabolic points in a straightforward way.

Definition 2.10. A parabolic weight ~a ∈ W is called effective ifM(~a)s 6= ∅. An effective weight is called
general ifM(~a) =M(~a)s.

By Corollary 2.8, for a general parabolic weight,M(~a) is smooth.

Let us study stability walls on W . Let (E = O(k)⊕O(−k), {Vi},~a) be a parabolic vector bundle over P1

for some nonnegative k. If it is strictly semistable (hence it is on a wall), then there is a parabolic subbundle
(F = O(−m),~b) such that µ(F ) = µ(E). Let I = {i ∈ {1, · · · , n} | F |pi = Vi}. Then

−m+
∑
i∈I

ai = µ(F ) = µ(E) =
1

2

n∑
i=1

ai,

so

µ(F )− µ(E) =
∑
i∈I

ai −
∑
i∈Ic

ai = 2m.

Therefore all stability walls are defined by

(1) ∆I,m = {(a1, · · · , an) ∈W |
∑
i∈I

ai −
∑
i∈Ic

ai = 2m}.
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Lemma 2.11. The space of positive parabolic weights W is decomposed into finitely many chambers by walls ∆I,m

for I ⊂ {1, · · · , n} and m ∈ Z.

Note that ∆I,m = ∆Ic,−m.

Next, we see what parabolic bundles become unstable as we cross a stability wall. It suffices to analyze
the change under a simple wall-crossing along the relative interior of a wall. Choose a general point ~a in
∆I,m. Let ∆+

I,m and ∆−I,m be small neighborhoods of at ~a in

{(b1, · · · , bn) ∈W |
∑
i∈I

bi −
∑
i∈Ic

bi > 2m} and {(b1, · · · , bn) ∈W |
∑
i∈I

bi −
∑
i∈Ic

bi < 2m}

respectively. The stability coincide with the semistability on ∆±I,m. A parabolic bundle is ∆+
I,m-stable (resp.

∆−I,m-stable) if it is stable with respect to parabolic weights in ∆+
I,m (resp. ∆−I,m). We look for parabolic

bundles which are ∆−I,m-stable but ∆+
I,m-unstable.

Lemma 2.12. If (O(k)⊕O(−k), {Vi}) is ∆−I,m-stable but ∆+
I,m-unstable, then any destabilizing subbundle is of the

form (O(−m),~b) and I = I~b := {i ∈ [n] | O(−m)|pi = Vi}.

Proof. Since (O(k)⊕O(−k), {Vi}) is ∆+
I,m-unstable, we have a destabilizing subbundle O(−m′) of (O(k)⊕

O(−k), {Vi}) such that

−m′ +
∑
i∈I~b

ai >
1

2

n∑
i=1

ai

for any ~a ∈ ∆+
I,m. Since (O(k)⊕O(−k), {Vi}) is ∆−I,m-stable,

−m′ +
∑
i∈I~b

ai <
1

2

n∑
i=1

ai

for any ~a ∈ ∆−I,m. Then ∆−I,m ⊂ ∆−I~b,m′
and ∆+

I,m ⊂ ∆+
I~b,m

′ . Hence ∆I,m = ∆I~b,m
′ . Thus m′ = m and

I = I~b. �

The uniqueness of the maximal destabilizing subbundle can be shown as in the case of ordinary bundles.

Suppose that ~a is a general point of ∆I,m. Let ~a− (resp. ~a+) be in ∆−I,m (resp. ∆+
I,m). Assume that both

M(~a−) andM(~a+) are nonempty. Since ~a± are general parabolic weights,M(~a±) are smooth by Corollary
2.8. There are two birational morphisms

M(~a−)

φ−

$$

M(~a+)

φ+

zz

M(~a).

The image Y of the exceptional locus of φ± is the locus parameterizes S-equivalent classes of (O(−m),~b)⊕
(O(m),~c), where (O(−m),~b) is the destabilizing bundle for ∆+

I,m and ~c = ~a −~b. The moduli of parabolic
line bundles of a fixed degree on P1 is a point because there is a unique line bundle for each degree. So Y is
always a single point. For the same I , define~b± and ~c± by using~a±. The exceptional fiber of φ− (resp. φ+) is
a projective space Y − := PExt1((O(m),~c−), (O(−m),~b−)) (resp. Y + := PExt1((O(−m),~b+), (O(m),~c+))).

Using Proposition 2.5 and arguments in [Tha02, Section 5], we can see that Y − ∼= M(~a−) \M(~a+) and
Y + ∼=M(~a+) \M(~a−).

Proposition 2.13 ([Tha96, Section 7]). The blow-up ofM(~a−) along Y − is isomorphic to the blow-up ofM(~a+)

along Y +. In particular, dimY − + dimY + = dimM(~a)− 1.
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We will use the following dimension computation later.

Proposition 2.14. Let ~a− be a general point of ∆−I,m. Then

dimExt1((O(m),~c−), (O(−m),~b−)) = 2m+ n− 1− |I|.

Proof. By Proposition 2.6, we have natural isomorphisms

Ext1((O(m),~c−), (O(−m),~b−)) ∼= SParHom((O(−m− (n− 2)),~b−), (O(m),~c−))∨.

Consider the following short exact sequence of sheaves

0→ SParHom((O(−m− (n− 2)),~b−), (O(m),~c−))→ Hom((O(−m− (n− 2)),~b−), (O(m),~c−))

→
⊕n

i=1 Hom((O(−m− (n− 2)),~b−)|pi , (O(m),~c−)|pi)⊕n
i=1Npi((O(−m− (n− 2)),~b−), (O(m),~c−))

→ 0

where Np((O(k), ~x), (O(`), ~y)) is the subspace of strictly parabolic maps in Hom((O(k), ~x)|p, (O(`), ~y)|p) at
a point p ∈ P1. For ~a− ∈ ∆−I,m, µ(O(m),~c−) > µ(O(−m),~b−). Thus

H1(SParHom((O(−m− (n− 2)),~b−), (O(m),~c−))) = Ext0((O(m),~c−), (O(−m),~b−))∨

= ParHom((O(m),~c−), (O(−m),~b−))∨ = 0

by Proposition 2.3. Hence we have a short exact sequence of vector spaces

0→ SParHom((O(−m− (n− 2)),~b−), (O(m),~c−))→ Hom((O(−m− (n− 2)),~b−), (O(m),~c−))

→ ⊕
n
i=1Hom((O(−m− (n− 2)),~b−)|pi , (O(m),~c−)|pi)
⊕ni=1Npi((O(−m− (n− 2)),~b−), (O(m),~c−))

→ 0.

Since

dimNpi((O(−m− (n− 2)),~b−), (O(m),~c−)) =

{
0, i ∈ I
1, i ∈ Ic

,

dim SParHom((O(−m− (n− 2)),~b−), (O(m),~c−)) = dim Hom((O(−m− (n− 2)),~b−), (O(m),~c−))− |I|
= dim H0(O(2m+ n− 2))− |I| = 2m+ n− 1− |I|.

�

3. ELEMENTARY GIT QUOTIENTS AND THE MODULI SPACE OF PARABOLIC BUNDLES

The ring of invariants of a product of projective lines have been studied since the 19th century. In this
section, we review some of the classical results and its relation with moduli spaces of rank 2 parabolic vector
bundles on P1. For the basic of GIT, consult [MFK94].

3.1. The GIT quotient of a product of projective lines. Fix n ≥ 3. For ~a = (a1, · · · , an) ∈ Qn>0, consider
an ample Q-line bundle L := O(a1, · · · , an) on (P1)n. On (P1)n, SL2 acts diagonally. We can take the GIT
quotient with respect to L,

(P1)n//LSL2 := Proj
⊕
m≥0

H0((P1)n, bLmc)SL2 .

Conditions for the (semi)stability of (P1)n with respect to L are described in the following theorem. We
denote the stable (resp. semistable) locus by ((P1)n)s (resp. ((P1)n)ss).

Theorem 3.1 ([MFK94, Proposition 3.4]). Let L = O(a1, · · · , an) be a Q-linearization. Let a :=
∑n
i=1 ai. For a

point x := (x1, · · · , xn) ∈ (P1)n, x ∈ ((P1)n)ss (resp. x ∈ ((P1)n)s) if and only if for any y ∈ P1,∑
xi=y

ai ≤ a/2 (resp. < a/2).
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Corollary 3.2. (1) For a linearization L = O(a1, · · · , an), (P1)n//LSL2 is nonempty if and only if ai ≤ a/2

for every 1 ≤ i ≤ n.
(2) The stable locus is nonempty (in particular, (P1)n//LSL2 is (n− 3)-dimensional) if and only if ai < a/2 for

every 1 ≤ i ≤ n.
(3) The semi-stable locus coincides with the stable locus if and only if for any nonempty I ⊂ [n],

∑
i∈I ai 6=∑

i/∈I ai.

Definition 3.3. We say that a linearizationL is effective if it satisfies (2). An effective linearization is general
if it satisfies (3) as well. Compare with Definition 2.10.

Remark 3.4. The subgroup {±1} ⊂ SL2 acts trivially on (P1)n, thus the SL2-action induces a PGL2 =

SL2/{±1}-action. If L is general, at each point x ∈ ((P1)n)s the stabilizer Stabx is {±1} ⊂ SL2. So PGL2

acts on ((P1)n)s freely, and (P1)n//LSL2 is smooth.

3.2. The moduli space of parabolic bundles as an elementary GIT quotient. The readers are able to ob-
serve that the combinatorics of the GIT stability is identical to that of the stability of rank 2 parabolic bundles
on P1.

Proposition 3.5. Let ~a = (a1, · · · , an) ∈ W and let L = O(a1, · · · , an) be the corresponding Q-linearization.
Assume that L is effective and a :=

∑n
i=1 ai < 2. Then

M(~a) ∼= (P1)n//LSL2.

Proof. First of all, let (E, {Vi}) be a semistable parabolic bundle of degree 0. By Grothendieck’s theorem
([HL10, Theorem 1.3.1]), E = O(k) ⊕O(−k) for some nonnegative integer k. If k ≥ 1, then µ(O(k)) ≥ 1 >

a/2 = µ(E). Thus E is not semistable unless it is a trivial bundle.

LetX = (P1)n and πi : X → P1 be the i-th projection. Let E be a rank two trivial vector bundle onX×P1.
Then P(E) is isomorphic to X × P1 × P1. For each i, define a morphism

si : X → X × P1 ∼=→ X × {pi} × P1

by the graph of i-th projection. Over each X × {pi}, define a line bundle Vi as [Vi|(x,pi)] = si(x). Then Vi is
a natural subbundle of E|X×{pi} of rank one. Now (E , {Vi}) is a family of rank 2 parabolic vector bundles
on P1 over X . Consider the restricted family over Xss and use the same notation (E , {Vi}).

Let (O2, {Vi}) be the fiber of (E , {Vi}) over x = (x1, · · · , xn) ∈ Xss. Note that all subbundles of O2 is
O(−k) for some nonnegative integer k. If k ≥ 1, then

µ(O(−k)) = −k +
∑

O(−k)|pi=Vi

ai <
a

2
= µ(O2)

because ∑
O(−k)|pi=Vi

ai −
∑

O(−k)|pi 6=Vi

ai ≤ a < 2 ≤ 2k.

So it is not a destabilizing bundle.

Let F = V ⊗ O ⊂ O2 be a trivial subbundle for a one dimensional subspace V ⊂ C2. Note that if
F |xi = V for some i ∈ I ⊂ [n], xi = xj for every i, j ∈ I . From the GIT stability in Theorem 3.1 (with
y = [V ]),

∑
E|xi

=V ai ≤ a/2. Thus for x = (x1, · · · , xn) ∈ Xss,

µ(E) =
∑

E|xi
=V

ai ≤
a

2
= µ(O2).

Therefore Xss parametrizes semistable parabolic vector bundles with respect to the parabolic weight ~a.
Thus we have a classifying morphism µ : Xss → M(~a). There is a natural SL2-action on Xss and each
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orbit parametrizes isomorphic parabolic bundles, since it acts as a canonical SL2-action on each fiber of the
trivial rank 2 bundle. Thus there is a quotient morphism µ̄ : X//LSL2 →M(~a).

One can check that µ̄ is injective. Indeed, the injectivity over the stable locus M(~a)s is obvious. For a
strictly semistable point corresponding an S-equivalent class of E := (O,~b1) ⊕ (O,~b2) ∈ M(~a), µ−1(E) =

X1 ∪X2 where Xi = {(x1, · · · , xn) | xj = xk if j, k ∈ I~bi}. Because the closure of the orbit of a point in Xi

contains an orbit X1 ∩ X2 which is closed in Xss, they are identified to a point in the GIT quotient. Since
M(~a) is irreducible and µ̄ is dominant, µ̄ is surjective. Finally, becauseM(~a) is normal by Theorem 2.2, µ̄ is
an isomorphism. �

It is already known thatM(~a) is rational for any effective parabolic weight ~a ∈ W ([Bau91, BH95]). We
provide another proof of the rationality ofM(~a) for any effective parabolic weight~a ∈W , which is a simple
consequence of Proposition 3.5.

Corollary 3.6. For any effective parabolic weight ~a ∈W ,M(~a) is rational.

Proof. By Proposition 2.13 and Proposition 3.5, M(~a) is birational to (P1)n//LSL2 where L is an effective
linearization. It is known that (P1)n//LSL2

∼= Pn−3, when L is proportional to O(n− 2, 1, 1, · · · , 1) ([Has03,
Sections 6.2, 7.2 and Theorem 8.2]). �

3.3. General case. For a general parabolic weight ~a ∈W , we may find c > 1 such that ~a = c~b and
∑
bi < 2.

Thus to study the geometry ofM(~a), it suffices to study the change of the moduli space when the parabolic
weight changes fromM(~b) toM(c~b) = M(~a) for c > 1. Note that if 1 ≤ c < min{1/bi}, then c~b ∈ W , too.
By perturbing the given parabolic weight slightly, we may assume that all wall-crossings are simple ones.

Proposition 3.7. Let ~a be a general parabolic weight in W such that
∑
ai < 2. Consider the wall-crossings from

M(~a) toM(c~a) as c increases in the range of 1 ≤ c < min{1/ai}. Suppose that all wall-crossings are simple ones.
Then the first wall-crossing is a blow-up at the point [~p] ∈ (P1)n//LSL2

∼=M(~a). All other wall-crossings are flips
or blow-downs.

Proof. By Lemma 2.11, each stability wall is given by ∆I,m. Then for c0~a ∈ ∆I,m,

c0

(∑
i∈I

ai −
∑
i∈Ic

ai

)
= 2m

by (1). Then for c > c0, c~a ∈ ∆+
I,m and

c

(∑
i∈I

ai −
∑
i∈Ic

ai

)
> 2m.

This is true only if m ≥ 0. Also, during the variation of stability conditions in the proposition, we do not
meet a stability wall of type ∆I,0, because the ratios between parabolic weights do not change. Thus m > 0.
Now it is clear that the first stability wall that we meet is ∆[n],1, i.e., when

∑n
i=1 cai = 2.

Then by Proposition 2.13, the blow-up ofM− along Y − is isomorphic to the blow-up ofM+ along Y +.
Furthermore, by Proposition 2.14, Y − is a point and Y + = Pn−4, which is a divisor ofM+. ThereforeM+

is isomorphic to the blow-up ofM− = (P1)n//LSL2 at the point Y −. Note that x = (x1, · · · , xn) ∈ Y − if
and only if the corresponding parabolic bundle (O2, {Vi}) has a subbundle O(−1) which contains all Vi’s.
Since O(−1) ⊂ O is isomorphic to the tautological subbundle, (x1, · · · , xn) = ([V1], · · · , [Vn]) is equivalent
to ~p = (p1, · · · , pn).

After the first wall-crossing, since m > 1 or |I| < n, 2m + n − 1 − |I| > 1. Thus by Proposition 2.14 and
Proposition 2.13 again, the modification is not a blow-up anymore. �
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4. THE EFFECTIVE CONE OF THE GIT QUOTIENT

As a first step toward Mori’s program of M(~a) and (P1)n//LSL2, we compute the effective cone of
(P1)n//LSL2.

4.1. Rational Picard group. The Picard group of (P1)n is generated by the pull-backs π∗iO(1) for 1 ≤ i ≤ n
where πi : (P1)n → P1 is the i-th projection. We denote the tensor product π∗1O(b1) ⊗ · · · ⊗ π∗nO(bn) by
O(b1, · · · , bn), or O(

∑n
i=1 biei) where ei is the i-th standard basis in Qn. So Pic((P1)n) ∼= Zn and the nef

cone Nef((P1)n) ⊂ Pic((P1)n)Q ∼= Qn is generated by O(ei). The effective cone is equal to the nef cone so it
is simplicial.

Let L = O(a1, · · · , an) be a Q-linearization of (P1)n. Consider the GIT quotient (P1)n//LSL2. Since it is a
quotient of semistable locus, there is a natural diagram

((P1)n)ss
ι
//

π

��

(P1)n

(P1)n//LSL2

where ι is the inclusion and π is the quotient map.

For any two indices 1 ≤ i < j ≤ n, let

∆{i,j} = {(x1, · · · , xn) ∈ (P1)n | xi = xj}.

It is SL2-invariant, so it descends to an effective cycle

D{i,j} = π(ι∗(∆{i,j})) = {(x1, · · · , xn) ∈ (P1)n//LSL2 | xi = xj}

on the quotient, if ∆{i,j} intersects the semistable locus, i.e., ai + aj ≤ a/2. Furthermore, if it intersects the
stable locus (so ai + aj < a/2), then D{i,j} is a divisor on (P1)n//LSL2. If ai + aj = a/2, ∆{i,j} has a unique
semistable orbit {(x1, · · · , xn) | xi = xj , xk = x` for all k, ` 6= i, j} which is closed in ((P1)n)ss. Thus in this
case D{i,j} is a single point.

Note that O(∆{i,j}) = O(ei + ej).

Proposition 4.1. Suppose that n ≥ 5. Let L = O(a1, · · · , an) be a general Q-linearization on (P1)n. Let a =
∑
ai.

(1) The rational Picard group Pic((P1)n//LSL2)Q is naturally identified with the quotient space

Pic((P1)n)Q/〈∆{i,j} | ai + aj ≥ a/2〉,

via the identification D{i,j} 7→ ∆{i,j}.
(2) The rank of Pic((P1)n//LSL2)Q is n− k, where k is the number of ∆{i,j} with ai + aj ≥ a/2.

Remark 4.2. When n = 4, for any effective linearization L, the GIT quotient (P1)4//LSL2 is isomorphic to
P1.

Proof of Proposition 4.1. Let ((P1)n)us := (P1)n− ((P1)n)s be the unstable locus and let j : ((P1)n)us ↪→ (P1)n

be the inclusion. We have a natural exact sequence

An−1(((P1)n)us)
j∗−→ Pic((P1)n)

ι∗−→ Pic(((P1)n)s)→ 0.

After tensoring Q, the sequence is exact too. Each (n − 1)-dimensional irreducible component of ((P1)n)us

is of the form ∆{i,j} with ai + aj ≥ a/2. Therefore we have

Pic(((P1)n)s)Q = Pic((P1)n)Q/〈∆{i,j} | ai + aj ≥ a/2〉.
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Let Pic(X)SL2 be the group of isomorphism classes of SL2-invariant line bundles on X . Since

O(ei) =
1

2

(
O(ei + ej)⊗O(ei + ek)⊗O(ej + ek)−1

)
=

1

2

(
O(∆{i,j} + ∆{i,k} −∆{j,k})

)
and the right hand side is SL2-invariant, Pic((P1)n)Q ∼= Pic((P1)n)SL2

Q . The same identity is true for ((P1)n)s,
too.

By Kempf’s descent lemma ([DN89, Theorem 2.3]), an SL2-linearized (in particular, SL2-invariant) line
bundle E on ((P1)n)s descends to (P1)n//LSL2 if and only if for every closed orbit SL2 · x, the stabilizer
Stabx acts on Ex trivially. Because Hom(SL2,C∗) is trivial, for each SL2-invariant line bundle there is at
most one linearization. Furthermore since (P1)n is normal, for any SL2-invariant line bundle E, En admits
a linearization for some n ∈ N ([MFK94, Corollary I.1.6]). Therefore

Pic((P1)n//LSL2)Q ∼= Pic(((P1)n)s)SL2

Q .

This isomorphism is given by π∗. Thus D{i,j} maps to ∆{i,j}. This proves Item (1).

To show Item (2), it suffices to show that the set of divisorial unstable components are linearly indepen-
dent in Pic((P1)n)Q. Let G be a finite simple graph with vertex set [n] and edge set {∆{i,j} | ai + aj ≥ a/2},
the set of unstable divisors. Two vertices i and j are connected by ∆{i,j}. If there are two disjoint edges
∆{i,j},∆{k,`} in G, a > ai+aj +ak+a` ≥ a. Thus there are no disjoint edges. ThenG must be a star shaped
graph (all vertices are connected to a central vertex) or a complete graph K3 of degree 3. In these cases, it is
straightforward to check that the edge set is linearly independent. �

Definition 4.3. A Q-linearization L = O(a1, · · · , an) is called a linearization with a maximal stable locus if
ai + aj < a/2 for any {i, j} ⊂ [n].

Note that if L is a linearization with a maximal stable locus, then every irreducible component of the
unstable locus has codimension at least two. In particular, we have the maximal possible Picard rank. It
includes the case of symmetric linearization L = O(b, b, · · · , b) for some b ∈ Q>0.

Corollary 4.4. Suppose that n ≥ 5. Let L be a general Q-linearization with a maximal stable locus. Then
Pic((P1)n//LSL2)Q is isomorphic to Pic((P1)n)Q. In particular, it has rank n and D{i,j} generates the rational
Picard group.

4.2. The effective cone. The following proposition is a translation of a result in the classical invariant
theory.

Proposition 4.5. Suppose that n ≥ 5. Let L be a general Q-linearizationO(a1, · · · , an) on (P1)n. Then the effective
cone Eff((P1)n//LSL2) of (P1)n//LSL2 is generated by {D{i,j} | 1 ≤ i < j ≤ n, ai + aj < a/2}.

Proof. Let D be an effective divisor on (P1)n//LSL2. Then π∗D is an SL2-invariant divisor on ((P1)n)s. By
taking its closure in (P1)n, we have an SL2-invariant divisor ∆ := π∗(D) on (P1)n. Then none of irreducible
components of ∆ is in {∆{i,j} | 1 ≤ i < j ≤ n, ai + aj ≥ a/2}, since they are disjoint from ((P1)n)s.

If we denote the homogeneous coordinates of the i-th factor of (P1)n by [si : ti], then by the first fun-
damental theorem of invariant theory ([HMSV09, Section 2]), for any line bundle E on (P1)n, every SL2-
invariant element of H0(E) is generated by products of (sitj − sjti), which is precisely ∆{i,j}. In particular,
∆ ∈ H0(O(∆))SL2 is an effective linear combination

∑
c{i,j}∆{i,j} for some ∆{i,j} and c{i,j} > 0. Moreover,

on this linear combination ∆{i,j} with ai+aj ≥ a/2 does not appear since they are unstable and ∆ does not
have such components. Now each ∆{i,j} descends to D{i,j}. Thus D =

∑
c{i,j}D{i,j} with ai + aj < a/2.

In summary, every effective divisor on (P1)n//LSL2 is an effective linear combination of {D{i,j} | 1 ≤ i <
j ≤ n, ai + aj < a/2}. �



12 HAN-BOM MOON AND SANG-BUM YOO

Corollary 4.6. LetL = O(a1, · · · , an) be a general Q-linearization with a maximal stable locus. Then Eff((P1)n//LSL2)

has precisely 2n facets, namely,
Pi := Span{D{i,j} | j 6= i}, 1 ≤ i ≤ n

and
Ni := Span{D{j,k} | j, k 6= i}, 1 ≤ i ≤ n.

Proof. Take the hyperplane section
∑
ai = 2 in Pic((P1)n//LSL2)Q ∼= Pic((P1)n)Q. Then the intersection

with the effective cone generated by {D{i,j}} is the hypersimplex

∆(2, n) = {(a1, · · · , an) ∈ Qn |
n∑
i=1

ai = 2, 0 ≤ ai ≤ 1}

([Kap93, Section 1]). There is a one-to-one correspondence between the set of facets of Eff((P1)n//LSL2)

and that of ∆(2, n). Now the statement follows from [Kap93, Proposition 1.2.5]. �

Remark 4.7. When L is a general linearization with a maximal stable locus, the construction of the dual
curve for each facet of Eff((P1)n//LSL2) is easy. Since (P1)n//LSL2 is naturally a moduli space of n-pointed
smooth rational curves ([Has03, Section 8]), it suffices to construct a one-dimensional family of n-pointed
smooth rational curves with appropriate stability condition described by L.

First of all, take n − 1 general lines `2, · · · , `n on P2. Take a general point x ∈ P2 − ∪`i. Blow-up P2 at
x and let `1 be the exceptional divisor. Then BlxP2 ∼= F1 is a P1-bundle over `1 and we can regard it as a
family of n-pointed smooth rational curves on C1 := `1. Because ai + aj < a/2, any two marked points can
collide. Thus all fibers are stable. So C1 is a curve on (P1)n//LSL2. Then C1 ·D{1,j} = 0 and C1 ·D{i,j} = 1

for 2 ≤ i, j ≤ n. Therefore C1 is a dual curve for P1.

Now consider a trivial family π : P1 × P1 → P1 with (n − 1) distinct constant sections σ2, · · · , σn, and a
diagonal section σ1. Then (π : P1 × P1 → P1, σ1, · · · , σn) is a family of pointed curves over B1 := P1. So B1

is a curve on (P1)n//LSL2. Now B1 ·D{1,j} = 1 and B1 ·D{i,j} = 0 for 2 ≤ i, j ≤ n. Therefore B1 is the dual
curve for N1.

We close this section with a new notation for line bundles on (P1)n//LSL2.

Definition 4.8. Suppose that n ≥ 5. Let L be a general linearization. We denote a Q-line bundle E on
(P1)n//LSL2 by O(b1, · · · , bn) (or O(

∑
biei)) if E maps to the equivalent class of O(b1, · · · , bn) = O(

∑
biei)

under the isomorphism

Pic((P1)n//LSL2)Q ∼= Pic((P1)n)Q/〈∆{i,j} | ai + aj ≥ a/2〉

in Proposition 4.1.

Note that if there is an unstable divisor, the expression is not unique. For instance, if ∆{1,2} is unstable,
O(b1, · · · , bn) = O(b1 + c, b2 + c, b3, · · · , bn) for any c ∈ Q.

5. BACKGROUND ON CONFORMAL BLOCKS

In last three decades, the space of conformal blocks, which are fundamental objects in conformal field
theory, have been studied by many mathematicians and physicists. Although the original construction is
using the representation theory of affine Lie algebras, in this section we give an elementary definition of
the simplest case - sl2 conformal blocks on P1 - and their algebraic/combinatorial realizations. Because we
do not give the usual definition, we leave some references for the reader’s convenience. For the general
definition of conformal blocks, see [Uen08]. The connection with the moduli space of parabolic vector
bundles, see [Pau96].
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5.1. A quick definition of sl2 conformal blocks. In this section, we review an elementary definition of sl2
conformal blocks on P1, described in [Loo09, Section 1]. For the equivalence of the following definition and
the original one, consult [Bea96, Proposition 4.1].

We begin with some notational conventions. In this section, we write a sequence (k1, · · · , kn) as k.
|k| =

∑
i ki and k! =

∏
i ki!.

For any nonnegative integer k, let Vk = H0(P1,O(k)) be an irreducible SL2-representation with highest
weight k. The vector space Vk is identified with C[x, y]k, the space of homogeneous polynomials of degree
k. The infinitesimal sl2-action on C[x, y]k is given by e = x∂y, f = y∂x, h = x∂x − y∂y for the standard basis
e, f, h of sl2. The highest weight vector of Vk is xk and f jxk = k!

(k−j)!x
k−jyj . We may dehomogenize it by

taking x = 1. Then Vk is identified C[y]≤k (the space of polynomials of degree at most k) and the action of
e is given by ∂y .

For a sequence of nonnegative integers k = (k1, · · · , kn), let Vk = Vk1 ⊗· · ·⊗Vkn , with a natural diagonal
SL2-action. Set 2N = |k|, for a half integer N . There is an isomorphism of SL2-representations φ : Vk →
C[y1, · · · , yn]≤k, where C[y1, · · · , yn]≤k is the space of polynomials with degree≤ ki with respect to yi. Then
we can take a highest weight vector v ∈ Vk such that φ(v) = 1.

Let ei (resp. fi, hi) be the operator on Vk which acts on the i-th factor Vki as e (resp. f , h) and trivially
acts on the other factors. On Vk, e =

∑
i ei and so on. It is straightforward to check that φ(f jv) = k!

(k−j)!y
j.

By the action of h ∈ sl2, we can decompose Vk into eigenspaces Vk(λ) with the eigenvalue λ. Note that a
vector w ∈ Vk is SL2-invariant if and only if w ∈ Vk(0) and e · w = 0.

Definition 5.1. Let ~p = (p1, · · · , pn) be a sequence of n distinct points on C ⊂ P1. Fix an integer ` ≥ 0.
Let k = (k1, · · · , kn) be a sequence of nonnegative integers. The space of sl2-conformal blocks of level `
relative to ~p in Vk is the subspace of SL2-invariants of Vk which is annihilated by the operator (

∑
piei)

`+1.
We denote it by V`(k1, · · · , kn).

Remark 5.2. (1) Note that there is a natural inclusion

V`(k1, · · · , kn) ⊂ V`+1(k1, · · · , kn).

Furthermore, if ` ≥ N = |k|/2, V`(k1, · · · , kn) ∼= V SL2

k
∼= H0((P1)n,O(k1, · · · , kn))SL2 because the

operator (
∑
piei)

N+1 is trivial.
(2) For the natural Sn-action permuting n irreducible factors of Vk,

V`(k1, · · · , kn) ∼= V`(kσ(1), · · · , kσ(n))

for every σ ∈ Sn.
(3) If ki > ` for some i, V`(k1, · · · , kn) = 0.
(4) Since V0 ∼= C, there is a natural isomorphism

V`(k1, · · · , kn, 0) ∼= V`(k1, · · · , kn).

In the physics literature, this isomorphism is called the propagation of vacua.

The following lemma provides an elementary description of sl2-conformal blocks.

Lemma 5.3 ([Loo09, Lemma 1.3]). An element β ∈ V SL2

k is in V`(k1, · · · , kn) (relative to ~p ∈ Cn ⊂ (P1)n) if and
only if φ(β) has zero of order at least N − ` at ~p.

From the identification Vk ∼= C[y]≤k and the description of sl2-action as differential operators, it is
straightforward to see that the map

Vk ⊗ Vj ↪→ Vk+j
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given by f ⊗ g 7→ fg induces

V SL2

k ⊗ V SL2

j ↪→ V SL2

k+j .

Furthermore, by the identification of level ` conformal blocks as polynomials vanishing at ~p with multiplic-
ity N − ` in Lemma 5.3, we have the product map on the level of conformal blocks:

V`(a1, · · · , an)⊗ Vm(b1, · · · , bn) ↪→ V`+m(a1 + b1, · · · , an + bn).

5.2. Factorization and some combinatorial results on sl2 conformal blocks. The rank of sl2-conformal
blocks can be computed by the following inductive formula.

Proposition 5.4 (Fusion rule and factorization rule, [Bea96, Section 4]). Let k1, · · · , kn be n nonnegative inte-
gers such that ki ≤ `.

(1) The rank of V`(k1) is one when k1 = 0. Otherwise the rank is zero.
(2) The rank of V`(k1, k2) is one when k1 = k2. Otherwise the rank is zero.
(3) rankV`(k1, k2, k3) = 1 if and only if

∑
ki is even,

∑
ki ≤ 2` and kj ≤

∑
ki/2. Otherwise the rank is zero.

(4) For any 1 ≤ t ≤ n,

rankV`(k1, · · · , kn) =
∑̀
j=0

(rankV`(k1, · · · , kt, j)) (rankV`(j, kt+1, · · · , kn)) .

The rank of sl2-conformal blocks is indeed the number of certain combinatorial objects. Fix a positive
integer ` and let k = (k1, · · · , kn) be a sequence of integers such that 0 ≤ ki ≤ `.

Definition 5.5 (D. Swinarski). A double sequence of level ` and shape k is a 2× n matrix

DS =

(
x1 x2 · · · xn

y1 y2 · · · yn

)
such that:

(1) Each xj and yj is an integer between 0 and `;
(2) xj + yj = kj for 1 ≤ j ≤ n;
(3) For each 1 ≤ i ≤ n,

xi +

i−1∑
j=1

(xj − yj) ≤ `;

(4) For each 1 ≤ i ≤ n,

−yi +

i−1∑
j=1

(xj − yj) ≥ 0;

(5)
∑n
j=1 xj =

∑n
j=1 yj .

For a double sequence DS, the height h(DS) is the maximum of xi +
∑i−1
j=1(xj − yj) for 1 ≤ i ≤ n− 1. Note

that x1 ≤ h(DS) ≤ `.

Remark 5.6. Definition 5.5 implies several nontrivial implications. First of all, if
∑i−1
j=1(xj − yj) = 0, then

−yi ≥ 0 by (4). Since yi is nonnegative by (1), yi = 0. In particular, y1 = 0. Also if
∑i
j=1(xj − yj) = 0, then

0 =

i∑
j=1

(xj − yj) = xi − yi +

i−1∑
j=1

(xj − yj) ≥ xi

by (4). So xi = 0 by (1) again. As a special case, xn = 0.
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We can visualize a double sequence by using a boxed Catalan path, introduced by B. Alexeev. For a
double sequence DS, we can draw a path in the first quadrant of R2 as the following. Start from the origin.
For each j, draw (1, 1) vector xj times and draw (1,−1) vector yj times. Then (3) and (4) imply that the
path is lying on the region 0 ≤ y ≤ `. By (5), the ending point is (|k|, 0). Remark 5.6 says that if there is a
point (x, 0) at the end of j-th move, then the j-th move is a downward move and the (j + 1)-th move is an
upward move. The height h(DS) is simply the height of the boxed Catalan path corresponding to DS.

Indeed, (4) implies a stronger condition. For each move, we can draw a lower alternative path for each
move by drawing (1,−1) vectors first then drawing (1, 1) vectors. See Figure 1 for an example. The dashed
part can be obtained by drawing (1,−1) vectors first. Then the picture looks like a ‘boxed’ path. Also note
that if one of xi or yi is zero, then the corresponding box is simply a line segment. Now item (4) says that
each lower corner of a box must have nonnegative height as well.

(
2 1 1 0 1 0

0 1 2 1 0 1

)

FIGURE 1. A double sequence of level ≥ 3 and shape (2, 2, 3, 1, 1, 1) and the corresponding
boxed Catalan path

Let S(`,k) be the set of double sequences of level ` and shape k. We have learned the following result of
B. Alexeev from D. Swinarski.

Proposition 5.7 (B. Alexeev).
rankV`(k1, · · · , kn) = |S(`,k)|.

Proof. It is straightforward to check the proposition for n = 1, 2, 3. Also the number of double sequences
(or equivalently, boxed Catalan paths) satisfies the factorization rule. Indeed, consider a double sequence

DS =

(
x1 x2 · · · xn

y1 y2 · · · yn

)
and the corresponding boxed Catalan path. For any 1 ≤ t ≤ n, after t-th move, the y-coordinate is one of
0, 1, · · · , `. If the coordinate is h, we can construct two double sequences

DS′ =

(
x1 x2 · · · xt 0

y1 y2 · · · yt h

)
, DS′′ =

(
h xt+1 · · · xn

0 yt+1 · · · yn

)
.

It is straightforward to check that DS′ ∈ S(`, (k1, · · · , kt, h)) and DS′′ ∈ S(`, (h, kt+1, · · · , kn)). Conversely,
for two double sequences DS′ ∈ S(`, (k1, · · · , kt, h)) and DS′′ ∈ S(`, (h, kt+1, · · · , kn)), by removing the
last column (resp. the first column) of DS′ (resp. DS′′) and merging them, we obtain a double sequence in
S(`,k). Thus we have

|S(`,k)| =
∑̀
h=1

|S(`, (k1, · · · , kt, h))| · |S(`, (h, kt+1, · · · , kn))|.

�
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6. THE EFFECTIVE CONE OF THE MODULI SPACE OF PARABOLIC VECTOR BUNDLES

In this section, we compute the effective cone of M(~a) with an arbitrary general parabolic weight ~a.
In this section, we assume that the number n of parabolic points is at least 5. The following is a direct
consequence of Proposition 3.7.

Lemma 6.1. Let ~a = (a1, · · · , an) be a general parabolic weight such thatM(~a) has the maximal Picard number
n + 1. Then rank Pic(M(~a))Q = n + 1 and Eff(M(~a)) is identified with Eff(Bl[~p](P1)n//LSL2) for L with a
maximal stable locus.

Thus forM(~a) with Picard number n+ 1, to compute Eff(M(~a)), it suffices to compute Eff(M+), where
M+ := Bl[~p](P1)n//LSL2 with L = O(a1, · · · , an). Let E be the exceptional divisor of the blow-upM+ →
(P1)n//LSL2. Since Pic(M+)Q is generated byO(D{i,j}) = O(ei+ej) andE, we can uniquely write a Q-line
bundle onM+ (so onM(~a)) as

O(b1, · · · , bn)− tE

for some bi and t.

The main result of this section is the following theorem.

Theorem 6.2. Let ~a be a general parabolic weight such thatM(~a) has the maximal Picard number n+ 1. Then the
effective cone Eff(M(~a)) is polyhedral and generated by O(

∑
j∈I ej)− (i− 1)E for every I ⊂ [n] with |I| = 2i for

0 ≤ i ≤ bn/2c. All O(
∑
j∈I ej)− (i− 1)E are extremal, thus there are precisely 2n−1 extremal rays.

We give the proof of Theorem 6.2 after discussing several lemmas.

The following observations are simple but important to us.

Lemma 6.3. For any t ≥ 0, the linear system |O(b1, · · · , bn) − tE| is naturally identified with VN−t(b1, · · · , bn)

where N = (
∑
bi)/2.

Proof. Since M+ → (P1)n//LSL2 is a blow-up at a smooth point, |O(b1, · · · , bn) − tE| is the sub linear
system of |O(b1, · · · , bn)| consisting of the sections vanishing at [~p] with multiplicity ≥ t. By Lemma 5.3, it
is identified with VN−t(b1, · · · , bn). �

Lemma 6.4. For any I ⊂ [n] with |I| = 2i and 0 ≤ i ≤ bn/2c, the linear system |O(
∑
j∈I ej) − (i − 1)E| is

nonempty. It is a conformal block of level one.

Proof. For i ≥ 1, note that |O(
∑
j∈I ej) − (i − 1)E| = V1(b1, · · · , bn) where bj = 1 if j ∈ I and bj = 0

otherwise. By Proposition 5.4, we have rankV1(b1, · · · , bn) = 1. When i = 0, we have |O + E| = |E| 6= ∅,
which may be formally identified with V1(0, 0, · · · , 0). �

The next lemma is a key combinatorial result for the computation of the effective cone.

Lemma 6.5. Let DS be a double sequence of level `, height h(DS) > 1, and of shape k = (k1, · · · , kn) with
k1 ≥ · · · ≥ kn > 0. There is a nonempty even subset T ⊂ [n] such that there is a double sequence DS′ with level
`− 1, height h(DS′) = h(DS)− 1, and shape k′ = (k′1, · · · , k′n) where

k′j =

kj , j /∈ T,

kj − 1, j ∈ T.
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Proof. We will construct a new double sequence

DS′ =

(
x′1 x′2 · · · x′n
y′1 y′2 · · · y′n

)
and T as the following. At the beginning, set DS′ = DS and T = ∅. The reader can understand the
modification below by identifying DS with the corresponding boxed Catalan path.

First of all, consider the special case that the boxed Catalan path meets the x-axis at the starting point
and the end point only. Set c1 := 1 and put c1 in T . Let c2 > c1 be the smallest index such that 1)
−yc2 +

∑c2−1
i=1 (xi − yi) = 0 and 2) between c1-th move and c2-th move, the path reaches the height h(DS)

at least once. If yc2 = 0, then
∑c2−1
i=1 (xi − yi) = 0 and the path meets x-axis after c2 − 1-th move, too. From

the assumption, we always have yc2 > 0. Note that n satisfies all of two conditions, so the set of indices
satisfying them is nonempty. Put c2 in T .

We will continue the construction of T as the following. If the path reaches the height h(DS) after c2-
th move, then let c2j+1 > c2j be the smallest index so that xc2j+1 > 0. There must be at least one such
index because if not, then after c2j-th move, it never reach the height h(DS). Let c2j+2 > c2j+1 be the
smallest index satisfying two conditions in the previous paragraph. Then yc2j+2

> 0. Set c2j+1, c2j+2 ∈ T .
Continue this procedure until there is no remaining intersection with the path and y = h(DS). After that,
set x′c2j+1

:= xc2j+1
− 1 and y′c2j+2

:= yc2j+2
− 1 for all j ≥ 0.

By the construction, T is even and nonempty, h(DS′) = h(DS)− 1, the new level is at most `− 1, and k′

is that in the statement of the lemma. Conditions 1, 2, and 5 in Definition 5.5 are clear from the construction.
Also it is a routine computation to verify conditions 3 and 4. Thus DS′ is a double sequence. See Figure 2
for an example of the modification.

In general, if there are several points on which the path and the x-axis intersect, then we can modify each
part over the x-axis separately by using the above method. It is clear that we obtain a new double sequence
satisfying the assumption. �

c1 c2
c3 c4

⇓

FIGURE 2. An example of the modification of a boxed Catalan path

Proof of Theorem 6.2. We may assume that M(~a) = M+, that is, a blow-up of (P1)n//LSL2 at [~p] where
L = O(a1, · · · , an).

Take an effective divisor D ∈ |O(k1, · · · , kn) − tE|. Since M+ → (P1)n//LSL2 is a blow-up at a point
and E is the exceptional divisor, the intersection of Eff(M+) with the half space t ≤ 0 is generated by the
extremal rays of (P1)n//LSL2 and E.
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Suppose that t ≥ 0. Then D is the zero set of a section s ∈ VN−t(k1, · · · , kn) where 2N =
∑
ki. By

rearranging the indices, we may assume that k1 ≥ · · · ≥ kn. Also by the propagation of vacua, we may
assume that kn > 0. Since VN−t(k1, · · · , kn) 6= 0, by Proposition 5.7, there is a double sequence DS of level
N − t and shape k.

By Lemma 6.5, we can construct a set T ⊂ [n] and a double sequence DS′ of level N − t− 1 and shape k′

(see Lemma 6.5 for notations). By Proposition 5.7 again, rankVN−t−1(k′1, · · · , k′n) > 0. Furthermore, if we
set

bi =

1, i ∈ T,

0, i /∈ T,

then V1(b1, · · · , bn) 6= 0 by the factorization rule and we have a morphism

V1(b1, · · · , bn)⊗ VN−t−1(k′1, · · · , k′n) ↪→ VN−t(k1, · · · , kn),

which is given by the multiplication of sections (see Section 5.1). If we set |k′| =
∑
k′i, N

′ = |k′|/2, then
N − t − 1 = N ′ − (t + 1 − |T |/2). Therefore the divisor D is numerically equivalent to the sum of a
divisor corresponding to a level one conformal block and an effective divisor in |O(k′1, · · · , k′n)− t′E|where
t′ := t+ 1− |T |/2 ≤ t.

By induction on |k|, we can see that D is numerically equivalent to an effective sum of level one confor-
mal blocks, E and a divisor corresponding to Vr(c1, · · · , cn) where ci is either 0 or 1 and r ≥ 1. The very
last divisor is an effective sum of a level one conformal block and the divisor E. In summary, D is in the
cone generated by level one conformal blocks and E.

It remains to show that all of the generators are indeed extremal rays. It is shown in Proposition 6.6
below. �

Proposition 6.6. For 0 ≤ i ≤ bn/2c and I ⊂ [n] with |I| = 2i, a divisor in |O(
∑
j∈I ej)− (i− 1)E| is an extremal

ray of Eff(M(~a)).

Lemma 6.7. For each n ≥ 3, there are n subsets J1, · · · , Jn ⊂ [n] such that

(1) |Jk| = n− 2;
(2) {

∑
j∈Jk ej} form a basis of Qn.

Proof. For 1 ≤ k ≤ n−1, let Jk = [n−1]−{k}. LetA be an (n−1)×(n−1) matrix whose k-th row is
∑
j∈Jk ej .

If we denote the square matrix whose all entries are one by J and if I is the identity matrix then A = J − I .
It is straightforward to check that the characteristic polynomial of J is P (t) = (−1)n−1tn−2(t − n + 1).
Now detA = det(J − I) = P (1) 6= 0, thus

∑
j∈J1 ej , · · · ,

∑
j∈Jn−1

ej are linearly independent. Finally, take
any J ′ ⊂ [n − 1] where |J ′| = n − 3 and define Jn = J ′ ∪ {n}. Then

∑
j∈J1 ej , · · · ,

∑
j∈Jn ej are linearly

independent. �

Proof of Proposition 6.6. Let

S = {O(
∑
j∈I

ej)− (i− 1)E | 0 ≤ i ≤ bn/2c, I ⊂ [n], |I| = 2i},

the set of generators of Eff(M(~a)). For i = 0, E is the exceptional divisor of a blow-up, so it is extremal. For
each i ≥ 1 and I ⊂ [n], we will construct n linearly independent functionals `1, · · · , `n ∈ Pic(M(~a))∗Q such
that

(1) `k(O(
∑
j∈I ej)− (i− 1)E) = 0;

(2) `k(D) ≥ 0 for all D ∈ S;
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for 1 ≤ k ≤ n. Since Pic(M(~a))Q has rank n + 1, we can conclude that all elements of S are extremal rays
of Pic(M(~a))Q. By symmetry, it is enough to show for I = {1, 2, · · · , 2i}, i.e., O(

∑2i
j=1 ej)− (i− 1)E. When

i ≥ 2, let J1, · · · , J2i be 2i subsets of [2i] constructed in Lemma 6.7. Define `k as:

(1) `k(O(
∑
ajej)− tE) =

∑
j∈Jk aj +

∑
j>2i aj − 2t for 1 ≤ k ≤ 2i;

(2) `k(O(
∑
ajej)− tE) = ak for 2i < k ≤ n.

If i = 1 (thus I = {1, 2}), define `k as:

(1) `k(O(
∑
ajej)− tE) =

∑n
j=1 aj − ak − t for k = 1, 2;

(2) `k(O(
∑
ajej)− tE) = ak for 2 < k ≤ n.

It is a routine computation to check that those linear functionals are linearly independent,

`k(O(

2i∑
j=1

ej)− (i− 1)E) = 0,

and `k(D) ≥ 0 for every D ∈ S. �

Remark 6.8. IfM(~a) is general (i.e. stability coincides with semistability) but does not have the maximal
Picard number, then it is a rational contraction (a composition of finitely many flips and divisorial contrac-
tions) ofM(~a′) with Picard number n + 1. If we denote the rational contraction by φ : M(~a′) 99K M(~a),
then there is a well-defined push-forward

φ∗ : Pic(M(~a′))Q → Pic(M(~a))Q

and Eff(M(~a)) = im φ∗(Eff(M(~a′))) since all divisors onM(~a) are Cartier. So Eff(M(~a)) is generated by
{φ∗(O(

∑
j∈I ej) − (i − 1)E)}. Therefore essentially Theorem 6.2 gives Eff(M(~a)) for a general parabolic

weight ~a.

7. THETA DIVISORS AND BIRATIONAL MODELS

Theorem 6.2 tells us that any effective divisor on M(~a) can be described as a nonnegative linear com-
bination of conformal blocks and the exceptional divisor E. This result has an interesting consequence
(Theorem 7.3).

Lemma 7.1. For a general parabolic weight ~a ∈W 0,M(~a) is a Mori dream space.

Proof. Abe showed that when ~b = (1/2, · · · , 1/2), M(~b) is a Fano variety ([Abe04, Proposition 2.7]). It is
straightforward to see that ~b is on a stability wall only if n is even. Thus by [BCHM10, Corollary 1.3.2],
M(~b) is a Mori dream space if n is odd. SetM(~bε) :=M(~b).

When n is even,~b lies on a stability wall so in this case the Picard number ofM(~b) is not maximal. But if
we perturb the parabolic weight slightly, then the anticanonical divisor is on the boundary of the nef cone
and if we subtract a boundary divisor with small coefficient, then it becomes ample. Thus for the perturbed
parabolic weight ~bε, M(~bε) has the maximal Picard number and it is log Fano. By [BCHM10, Corollary
1.3.2] again,M(~bε) is a Mori dream space, too.

Therefore in any case,M(~bε) is a Mori dream space and has the maximal Picard number. BecauseM(~bε)

andM(~a) are connected by finitely many flips, if one is a Mori dream space then so is the other.

Finally, for a general parabolic weight ~a, the spaceM(~a) is a smooth contraction of certainM(~a′) with
the maximal Picard number. Thus it is a Mori dream space, too. �
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By above lemma and [HK00, Proposition 1.11], we know that for any effective divisor we can construct
a projective model

M(~a)(D) := Proj
⊕
m≥0

H0(M(~a), bO(mD)c)

and there are only finitely many of them.

In [Pau96], Pauly described a generalization of the theta divisor on the Jacobian of a curve, to the moduli
space of parabolic vector bundles.

Definition 7.2 ([Pau96, Theorem 3.3]). In Pic(M(~a))Q, the theta divisor Θ~a is a divisor such that for any
family (E , {Vi}) over π : S →M(~a),

π∗(Θ~a) = (detRπ!E)−k ⊗ (

n⊗
i=1

detQi)kai ⊗ (det E|S×{y})e

where k is the smallest positive integer such that kai are all integers, y is a point of P1 and e is determined
by e = k(1− (

∑
ai)/2).

Pauly showed that Θ~a is ample ([Pau96, Theorem 3.3]) and

H0(M(~a),Θ~a) ∼= Vk(ka1, · · · , kan)

([Pau96, Corollary 6.7]) when 0 < ai < 1, or equivalently, 0 < kai < k for every 1 ≤ i ≤ n.

Now we can prove the second main theorem of this paper.

Theorem 7.3. For any Q-divisor D ∈ int Eff(M(~a)), the birational model M(~a)(D) is isomorphic to M(~b) for
some parabolic weight~b.

Proof. When rank Pic(M(~a))Q is not n+1,M(~a) is a rational contraction ofM(~a′) with the maximal Picard
number. Then Eff(M(~a)) is embedded into Eff(M(~a′)) naturally. So it suffices to show forM(~a) with the
maximal Picard number. Write D as O(b1, · · · , bn)− tE.

First of all, suppose that t > 0. We may replaceD by its integral multiple and assume thatD is sufficiently
divisible integral divisor. Then |D| = VN−t(b1, · · · , bn) where N =

∑
bi/2. If D is in the interior of the

effective cone, mD − E is effective for m � 0. This implies that Vm(N−t)−1(mb1, · · · ,mbn) 6= 0, so mbi ≤
m(N − t)− 1 by Item (3) of Remark 5.2. Therefore bi < N − t. Then D is a theta divisor onM(1/(N − t)~b).
Since D is ample onM(1/(N − t)~b),M(~a)(D) ∼=M(1/(N − t)~b).

If t ≤ 0, define D′ := O(b1, · · · , bn) = D + tE. ThenM(~a)(D′) ∼= (P1)n//LSL2, where L = O(b1, · · · , bn).
Since E is the exceptional divisor of the rational contractionM(~a) 99K (P1)n//LSL2,M(~a)(D) =M(~a)(D′).
By Proposition 3.5, (P1)n//LSL2

∼=M(c~b) for 0 < c < 2/(
∑
bi). �

Remark 7.4. The projective models for D ∈ ∂Eff(M(~a)) are also described by moduli spaces of parabolic
vector bundles.

There are two different types of degenerations of a theta divisor Vk(k1, · · · , kn). One is the case that
ki = 0 for some i. The other one is that ki = k (Of course, both cases can arise together). If k1, · · · , kr > 0

and kr+1 = · · · = kn = 0, then from the propogation of vacua, Vk(k1, · · · , kn) ∼= Vk(k1, · · · , kr), thus the
projective model is a moduli space of parabolic vector bundles with fewer parabolic points.

The projective model corresponding to the second degeneration is described by Bertram in [Ber94, Sec-
tion 3]. We may assume that k1 = · · · = kr = k and ki < k for i > r. For a family of parabolic bundles
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(E , {Vi},~a) of degree d over S, we can construct a new family of parabolic bundles of degree d − r and
(n− r) marked points as taking the kernel of

E →
r⊕
i=1

E|pi/Vi,

and taking n− r subspaces Vi for r < i ≤ n.

Thus we have a rational map
p :M(~a, d) 99KM(~a′, d− r),

where ~a′ = (ar+1, · · · , an). In general, p is not regular because it does not guarantee the stability of the
induced family. But when ai → 1 for 1 ≤ i ≤ r (equivalently, ki is very close to k for every 1 ≤ i ≤ r), p is a
regular morphism. Bertram showed that the pull-back of the canonical polarization from GIT onM(~a′,−r)
toM(~a) is precisely Vk(k, · · · , k, kr+1, · · · , kn), where ~a = 1

k (k1, · · · , kn) and ki is very close to k for every
1 ≤ i ≤ r.
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