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ABSTRACT. We consider a generalization of the Kauffman bracket skein algebra of a sur-
face that is generated by loops and arcs between marked points on the interior or bound-
ary, up to skein relations defined by Muller and Roger-Yang. We compute the center of this
Muller-Roger-Yang skein algebra and show that it is almost Azumaya when the quantum
parameter q is a primitive n-th root of unity with odd n. We also discuss the implications
on the representation theory of the Muller-Roger-Yang generalized skein algebra.

1. INTRODUCTION

Since its introduction [Prz91, Tur91], the Kauffman bracket skein algebra of a surface
Σ has been studied for its rich connection to many areas of low-dimensional topology,
including knot theory, hyperbolic geometry through the character variety, and topological
quantum field theory. In the course of these studies, many generalizations of the skein
algebra have emerged in the past decade [RY14, Mul16, Lê18, BKL24]. Current research
explores both the inter-connected relationships between the various generalizations and
with the many fields of mathematics related to them.

In this paper, our main object is a generalization that comes from deformation quan-
tization of the decorated Teichmüller space of Penner [Pen87]. This Muller-Roger-Yang
generalized skein algebra SMRY

q (Σ) was introduced in [BKL24], based on earlier works of
Roger-Yang [RY14] and Muller [Mul16]. It is generated by embedded loop classes in Σ as
well as arcs with endpoints at either interior punctures or marked points on the bound-
ary of Σ, and there are extra skein relations for arcs whose endpoints meet. Our results
concern the algebraic structure of SMRY

q (Σ), which is an important step towards under-
standing its representation theory and further connections with hyperbolic geometry.

A reason why we are particularly interested in SMRY
q (Σ) is its natural connection with

cluster algebras [FZ02] from combinatorial algebraic geometry. More specifically, for any
triangulable oriented surface Σ, the cluster algebra A(Σ) is a combinatorial commutative
algebra generated by arc classes [FST08, FT18], and it is natural to consider its quantiza-
tion. A quantum cluster algebra Aq(Σ), which is a deformation quantization of A(Σ), can
be defined [BZ05] for a surface without any interior punctures, and it is identical up to
localization with Muller’s generalization of the skein algebra SM

q (Σ) [Mul16]. However,
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Aq(Σ) is not well-defined when there is an interior puncture. On the other hand, when
q = 1, there is an explicit relationship among A(Σ), SMRY

q (Σ), and another cluster algebra
related to A(Σ) that is called the upper cluster algebra U(Σ) [MW24, KMW25+]. With
this point of view, one may understand SMRY

q (Σ) as a deformation quantization of A(Σ),
thus providing an alternative approach to a quantum cluster algebra even in the case of
surfaces with interior punctures.

1.1. Main results. In this paper, our main contribution is the complete characterization
of the center of the Muller-Roger-Yang skein algebra.

Let Σ be an oriented surface with interior punctures and marked points on its boundary,
and let {vi} denote the set of interior punctures. Let SMRY

q (Σ) be the Muller-Roger-Yang
skein algebra, which is a C[v±i ]-algebra we define more precisely in Definition 2.1. Let
Tn(x) be the nth Chebyshev polynomial of the first kind.

Theorem A. At a primitive root of unity q of odd order n, the center of the Muller-Roger-Yang
skein algebra Z(SMRY

q (Σ)) is the C[v±i ]-subalgebra generated by the following elements.

(1) Tn(α), where α is a loop class without self-intersection on its diagram, ;
(2) 1√

v
√
w
Tn(
√
v
√
wβ), where β is an arc class connecting two distinct interior punctures v

and w and does not admit any self-intersection on its diagram ;
(3) βn, where β is an arc class with one endpoint at a boundary marked point and does not

admit any self-intersection on its diagram;
(4) βD :=

∏
i βi, where D is a component of ∂Σ that is the union of cyclically ordered,

boundary arcs β1, β2, · · · , βk whose endpoints are the marked points on D.

As we will explain in Remark 3.5, the element 1√
v
√
w
Tn(
√
v
√
wβ) in Item (2) of Theo-

rem A is an element of SMRY
q (Σ), although

√
v itself is not in SMRY

q (Σ). Also note that for
simplicity we have described the central elements here using the multiplication opera-
tion of the skein algebra. The central elements can also be described using a threading
operation that is also ubiquitous in quantum topology. We will provide more details in
Section 3.

As special cases, SMRY
q (Σ) reduces to the Muller skein algebra SM

q (Σ) in the absence of
interior punctures, and to the Roger-Yang skein algebra SRY

q (Σ) in the absence of bound-
ary marked points. Our result agrees with Korinman’s computation of center for the
Muller skein algebra [Kor21]. In the case of the Roger-Yang skein algebra, we have the
following result.

Corollary 1.1. Let Σ be a punctured surface without a boundary. The center of the Roger–Yang
skein algebra SRY

q (Σ) is the C[v±i ]-subalgebra generated by the following elements.

(1) For a loop class α without self-intersection on its diagram, Tn(α);
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(2) For an arc class β connecting two distinct interior punctures v and w and does not admit
any self-intersection on its diagram, 1√

v
√
w
Tn(
√
v
√
wβ).

The delicate part of proof of Theorem A involves the algebraic behavior of arcs with
endpoint at interior punctures. It relies on the observation that SMRY

q (Σ) behaves like a
‘quadratic extension algebra’ of the usual skein algebra. For any arc class β joining two
interior punctures v and w, applying the puncture-skein relation twice at v and w, one
can check that vwβ2 is a linear combination of loops. We call it the ‘square trick,’ and note
that there are similar results for other types of arc classes. We will show, in Section 4, that
many standard techniques for the usual skein algebra, including the edge coordinates of
curve class with respect to an ideal triangulation ∆ on Σ, a basis with total lexicographical
order, and elimination of leading term of the given central element [FKBL19, Kor21, Yu23]
work very well for SMRY

q (Σ) via the square trick.

We also capitalize on relationships between SMRY
q (Σ) and other generalizations of the

skein algebra, specifically stated skein algebras that involve arcs with assignment of ± at
the endpoints at boundary marked points [Lê18, BKL24]. These various skein algebras
are defined and their bases are described in Section 2. In Section 3, we show that the
elements in the statement of Theorem A are central. In Section 4.1, we apply square trick
to generalize techniques for the usual skein algebra to prove they generate the center.

1.2. Representation theory of SMRY
q (Σ). For the usual skein algebra generated only by

loops, the representation theory is closely connected to both topological quantum field
theory [BHMV95] and character varieties [Bul97, PS00]; see e.g. [BW16, FKBL19, GJS19,
KK22] for more details. Understanding the algebraic structure of the center of SMRY

q (Σ)

is a crucial step toward classifying the finite-dimensional representations of SMRY
q (Σ).

In particular, using Theorem A, we show that SMRY
q (Σ) is an almost Azumaya algebra

(Proposition 5.5).

Recall that when a given algebra A is an Azumaya algebra and its center Z(A) is finitely
generated, the representation theory is particularly nice. There is a bijection between the
set of isomorphism classes of irreducible representations of A and MaxSpec Z(A). An
algebra A is called almost Azumaya if, after taking a localization by c ∈ Z(A), it becomes
an Azumaya algebra. In that case, there is an injective map from the Azumaya locus
MaxSpec Z(A)c to the set of finite dimensional irreducible representations of A.

Thus, because SMRY
q (Σ) is almost Azumaya, a large class of irreducible representations

is completely determined by the points in the Azumaya locus. It would be an interesting
question to understand the hyperbolic geometric content of the irreducible representa-
tions and their connection to representations of quantum cluster algebras in the view of
(almost) Azumaya algebras [MNTY24]. More discussion about the proof of that SMRY

q (Σ)

is almost Azumaya and some representation theoretic consequences can be found in Sec-
tion 5.
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Notation and convention. We use C as the coefficient ring. The parameter q ∈ C is a
primitive n-th root of unity, where n ≥ 3 is a positive odd integer.

Acknowledgements. We thank the American Institute of Mathematics, whose Quantum
Invariants and Low-Dimensional Topology workshop put together this collaboration. HK
was supported by JSPS KAKENHI Grant Number JP23K12976. HW was partially sup-
ported by DMS-2305414 from the US National Science Foundation.

2. MULLER-ROGER-YANG SKEIN ALGEBRA

In this section, we fix some notations and define several versions of generalized skein
algebras, including arc classes over a surface with a boundary.

2.1. Marked surfaces and tangles. A marked surface Σ = (Σ, V ) is a pair of a compact sur-
face Σ with (possibly empty) boundary and a finite set of points V ⊂ Σ. In the literature,
a marked surface is also referred to as a punctured bordered surface. In the following, we
will use ∂Σ := ∂Σ and IntΣ := IntΣ\V . The set V is decomposed into V = V◦⊔V∂ , where
V∂ = V ∩ ∂Σ and V◦ = V \ V∂ . V∂ is called the set of (boundary) marked points and V◦ is the
set of (interior) punctures. Each connected component of ∂Σ \ V∂ is called a boundary edge.
If the context is clear, we will not distinguish Σ and Σ.

A V -tangle is an embedded unoriented 1-dimensional compact submanifold α of Σ ×
(−1, 1) equipped with a framing (a choice of nowhere vanishing section of the normal
bundle) such that

(1) ∂α ⊂ V × (−1, 1),
(2) Intα ⊂ IntΣ× (−1, 1).

For (x, t) ∈ Σ× (−1, 1), the height of (x, t) is t.

A ∂-tangle is an embedded unoriented 1-dimensional compact submanifold α of Σ ×
(−1, 1) equipped with a framing such that

(1) ∂α ⊂ ((∂Σ \ V∂) ∪ V◦)× (−1, 1),
(2) for each boundary edge e, the elements of ∂α ∩ e× (−1, 1) have distinct heights,
(3) Intα ⊂ IntΣ× (−1, 1).

Note that when a component of a V -tangle (resp. ∂-tangle) α meets ∂Σ, it hits (resp.
avoids) the boundary marked points V∂ . We call both V -tangles and ∂-tangles tangles.

Two V -tangles are isotopic if they are isotopic in the class of V -tangles. We say the
framing of a one-dimensional submanifold α of Σ × (−1, 1) is vertical if at each point of
∂α, the normal vector defined from the framing points towards the direction of 1. Every
V -tangle is isotopic to a V -tangle with a vertical framing. A V -tangle in Σ × (−1, 1) with
a vertical framing is in a general position if its image by the projection Σ × (−1, 1) →
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Σ × {0} has only transversal multiple points as singular points, especially there are only
transversal double points in Σ \ (V ∪ ∂Σ). For the image of a V -tangle in general position
the projection, we assign over/under crossing information to each singular point with
respect to the heights. The resulting diagram in Σ = (Σ, V ) is called a V -tangle diagram of
the V -tangle.

We may also define the isotopy of ∂-tangles, vertical ∂-tangles, and ∂-tangles in a general
position in a similar way. In the case of ∂-tangle diagrams, we assign the total order to the
endpoints on each boundary edge according to their heights. We employ the following
convention for ∂-tangle diagrams: If an orientation is assigned to a boundary edge in a
picture, the heights of the drawn arcs incident to the edge are assumed to be increasing
with respect to the orientation. However, the heights do not always increase if a boundary
orientation is not drawn.

2.2. Skein algebras. For each interior puncture vi ∈ V◦, we set a formal variable (us-
ing the same notation vi), which commutes with everything. From now on, we use the
Laurent polynomial ring C[v±i ] generated by all v±i ∈ V◦ as the coefficient ring.

Definition 2.1 (The Muller–Roger–Yang skein algebra [BKL24]). We fix q ∈ C∗. The
Muller–Roger–Yang skein algebra of a marked surface (Σ, V ), denoted by SMRY

q (Σ), is the
C[v±i ]-algebra generated by all isotopy classes of V -tangles in Σ× (−1, 1), subject to

(A) = q + q−1 ,

(B) = (−q2 − q−2) ,

(C) = (q + q−1) ,

(D) = v−1
(
q1/2 + q−1/2

)
around an interior puncture v,

(E) q−1/2 = q1/2 ,

(F) = 0 = .

with a multiplication defined by stacking with respect to (−1, 1).

In each local relation (A)–(F), the shaded parts stand for the same region of Σ. The
horizontal/vertical segments in (E) and (F), are parts of ∂Σ, and the white vertices in the
pictures denote punctures or boundary marked points. In each relation, the curves except
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the horizontal or vertical segments are parts of V -tangle diagrams, which are assumed to
be the same outside the shaded region.

Remark 2.2. If Σ has no interior punctures, then SMRY
q (Σ) agrees with the definition of

the Muller skein algebra, which was originally introduced in [Mul16]. Lê in [Lê18] also
defined an extended version of the Muller skein algebra, which can be regarded as a sub-
algebra of SMRY

q (Σ) generated by V -tangles that do not have any component ending at
one of the interior punctures. When Σ has no boundary, then SMRY

q (Σ) is specialized to
the Roger-Yang skein algebra SRY

q (Σ) introduced in [RY14].

It is well known that any V -tangle diagram can recover a V -tangle and its isotopy class
does not change under Reidemeister moves drawn in Figure 1; see [Kau87, RY14, Mul16,
BKL24].

FIGURE 1. Reidemeister moves

A state of a ∂-tangle α is a map s : ∂α∩ (V∂ × (−1, 1))→ {+,−} and a stated ∂-tangle is a
pair (α, s). For simplicity, we abbreviate it to α if there is no confusion. Similarly, a stated
∂-tangle diagram is a ∂-tangle diagram γ equipped with a state s : ∂γ → {+,−}.

Definition 2.3 (The Lê–Roger–Yang skein algebra [BKL24]). The Lê–Roger–Yang skein al-
gebra of a marked surface (Σ, V ), denoted by SLRY

q (Σ), is the C[v±i ]-algebra generated by
all ambient isotopy classes of stated tangles in Σ× (−1, 1), subject to the relations (A)–(D),
(E’) and (F’) with a multiplication defined by stacking with respect to (−1, 1).

(E′) = q2 + q−1/2 ,

(F′) = = 0 and = q−1/2

As in the case of SMRY
q (Σ), by taking a C-subalgebra of SLRY

q (Σ) generated by isotopy
classes of ∂-tangles whose components do not end at any interior puncture vi ∈ V◦, we
may define an algebra SL

q (Σ). This algebra is different from the stated skein algebra intro-
duced by Lê in [Lê18] as we will describe below.
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←→

FIGURE 2. An example of moving trick. The left V -tangle diagram does
not have the preferred crossing because the right tangle diagram has an
extra crossing. The sequence under the V -tangle diagram denotes the height
order of three strands (1 is the highest end.).

For both of SM
q (Σ) and SL

q (Σ), we can make the following variation. One can con-
sider the C-algebra generated by all ambient isotopy classes of V -tangles (resp. stated
∂-tangles) in Σ× (−1, 1) without components incident to interior punctures, subject to the
all relations except (C) with a multiplication defined by stacking with respect to (−1, 1).
We denote them by SM+

q (Σ) and SL+
q (Σ), respectively. The algebra SM+

q (Σ) (resp. SL+
q (Σ))

was originally defined in [Mul16] (resp. [Lê18]) and was called the Muller skein algebra
(resp. stated skein algebra). There is a natural epimorphism

SM+
q (Σ)→ SM

q (Σ),

and its kernel is generated by ℓv − (q + q−1), where ℓv is the peripheral loop around v that
appears in the left diagram in the relation (C). There is a similar map for SL

q (Σ), too.

Recall that the height of the endpoints of a V -tangle diagram at each boundary puncture
are distinct. Now we consider the orientation of the boundary edges induced from that of
Σ. Then, we move the endpoints along the boundary edge in the direction of the positive
order so that a higher end goes farther. As a result, we obtain a positively ordered tangle
diagram. We call the operation the moving trick and it is depicted in Figure 2.

Finally, we assign + states to the endpoints of the resulting ∂-tangle diagram. Then, it
can be seen as an element of SLRY

q (Σ). It is clear that this operation is well-defined injective
map. If we have a positively stated diagram, we may uniquely recover a corresponding
V -tangle diagram. This map preserves the stacking structure. Therefore, there is a well-
defined algebra homomorphism

(1) m : SMRY
q (Σ)→ SLRY

q (Σ).

The morphism m induces well-defined morphisms (we retain the same notation) m :

SM
q (Σ)→ SL

q (Σ) and m : SM+
q (Σ)→ SL+

q (Σ).

We introduce one additional generalization of skein algebra. A corner arc is an ∂-tangle
whose diagram consists of only one arc on Σ encircling one boundary marked point as in
Figure 3. A bad arc is a corner arc with + and − states at two endpoints in clockwise with
respect to the encircled marked point. Let SLRY

q (Σ) be the quotient algebra of SLRY
q (Σ)
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FIGURE 3. A bad arc

modulo the ideal generated by bad arcs. This algebra is called the reduced LRY skein alge-
bra. Note that a bad arc does not meet any interior puncture, so it can be regarded as an
element of SL

q (Σ) and SL+
q (Σ) as well. Thus, we may define SL

q (Σ) and SL+

q (Σ) in the same
way.

Let SMRY
q (Σ)[∂−1] be the left Ore localization of Sq(Σ) by the multiplicative set generated

by boundary arc components. In our accompanying paper [KMW25+], we show that
there is a natural isomorphism

SMRY
q (Σ)[∂−1] ∼= SLRY

q (Σ).

The same proof shows two more isomorphisms SM
q (Σ)[∂−1] ∼= SL

q (Σ) and SM+
q (Σ)[∂−1] ∼=

SL+

q (Σ) which are all compatible. The last isomorphism is proved in [LY22].

In summary, we have the following commutative diagram. The maps π and p are epi-
morphisms, and i and m are monomorphisms.

(2) SM+
q (Σ)

π
//

m

��

SM
q (Σ)

m

��

i
// SMRY

q (Σ)

m

��

SL+
q (Σ)

π
//

p
��

SL
q (Σ)

i
//

p
��

SLRY
q (Σ)

p
��

SL+

q (Σ)
π

// SL

q (Σ)
i

// SLRY

q (Σ)

SM+
q (Σ)[∂−1] // SM

q (Σ)[∂−1] // SMRY
q (Σ)[∂−1]

Remark 2.4. Our primary interest in this paper is SMRY
q (Σ). But the use of SLRY

q (Σ) is
useful, particularly because of a possibility of using edge/corner coordinates for each
ideal triangulation ∆ of Σ.

2.3. Bases of LRY skein algebras. Let o be an orientation of ∂Σ. If o is the orientation
induced from Σ, then o is called the positive order.

A ∂-tangle diagram is simple if it has neither double points in Σ nor connected compo-
nents bounding an embedded (one-punctured) disk or homotopic to a part of a boundary
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interval relative to ∂Σ. Given an orientation o of ∂Σ, a simple tangle diagram α is o-ordered
if the partial order on ∂α with respect to the height is increasing along each boundary
interval in the direction of o. Note that every tangle diagram can be presented by an
o-ordered tangle diagram by isotopy. In particular, if o is the positive order, we call an
o-ordered tangle diagram a positively ordered tangle diagram.

We consider an order on the set {+,−} so that + is greater than −. For a stated tangle
diagram α, a state s : ∂α → {+,−} is increasing if s(x) ≥ s(y) for any x, y ∈ ∂α such that
the height of x is greater than that of y.

Let B(Σ, V ) be the set of isotopy classes of increasingly stated, positively ordered simple
tangle diagrams in (Σ, V ).

Theorem 2.5 ([BKL24, Theorem 3.6]). For a marked surface (Σ, V ), SLRY
q (Σ) is a free C[v±i ]-

module generated by B(Σ, V ).

Remark 2.6. One may describe a C-basis of SL
q (Σ) as well as that of SL+

q (Σ) in the same
way [Lê18].

2.4. Bases of MRY skein algebras. Any V -tangle diagram has a unique over/under in-
formation at every boundary marked point such that the obtained tangle diagram by
moving trick is positively ordered and the number of crossings in IntΣ do not change.
For a V -tangle diagram, we call crossings with such over/under information preferred
crossings.

Definition 2.7. A V -tangle diagram is called a reduced multicurve if

(1) it has no intersection in IntΣ, including V◦;
(2) it has no loops which bounds an embedded open disk in Σ including at most one

interior puncture;
(3) it has no null-homotopic loops and arcs;
(4) at each boundary puncture, it has a preferred crossing.

Let B(Σ, V )+ denote the set of isotopy classes of reduced multicurves.

Proposition 2.8 ([BKL24, Proposition 6.2]). Let Σ be a marked surface. Then SMRY
q (Σ) is a free

C[v±i ]-module generated by B(Σ, V )+.

Using the above bases and the definition of the moving trick morphism m : SMRY
q (Σ)→

SLRY
q (Σ), originally given in [Lê18] for SM+

q (Σ)→ SL+
q (Σ), we have the following.

Proposition 2.9. Let Σ be a marked surface. Then SMRY
q (Σ) is isomorphic to the C[v±i ]-subalgebra

of SLRY
q (Σ) generated by tangles with only + states.

2.5. Graded algebra structure. In this section, we review a natural graded C-algebra
structure on SMRY

q (Σ).
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For the set of interior punctures V◦, we may assign a ZV◦-graded ring structure

(3) SMRY
q (Σ) =

⊕
n∈ZV◦

SMRY
q (Σ)n

on SMRY
q (Σ), where SMRY

q (Σ)n is the degree n ∈ ZV◦ part. Recall that as a C-algebra,
SMRY
q (Σ) is generated by {v±i } and isotopy classes of V -tangles. Let T := {α

∏
vmi
i }where

α ∈ B(Σ, V )+ and mi ∈ Z. Then T is a spanning set of SMRY
q (Σ) as a C-vector space. We

first define a map
degV : T→ ZV◦ .

Let ev be the standard vector corresponding to v ∈ V◦. So any element in ZV◦ can be
written uniquely as

∑
v∈V◦

avev for some av ∈ Z. For any loop α, degV (α) = 0. If β is
an arc class connecting v, w ∈ V◦ (maybe possible that v = w), then degV (β) = ev + ew.
If there is a boundary marked point, we will ignore it. Finally, for the formal interior
vertex class v and its inverse v−1, define degV (v

±1) = ∓2ev. Let SMRY
q (Σ)n be the span

of {x ∈ T | degV (x) = n}. Since T is a spanning set, we obtain (3). One can check
degV (xy) = degV (x) + degV (y). It is also a routine calculation to check that all of the
relations for the definition of SMRY

q (Σ) are homogeneous. Therefore, we have a well-
defined map

SMRY
q (Σ)n ⊗ SMRY

q (Σ)m → SMRY
q (Σ)n+m

and SMRY
q (Σ) has a ZV◦-graded ring structure.

3. CENTRAL ELEMENTS

In this section, we show that each element listed in the statement of Theorem A is
central, that is, commutative with all elements in SMRY

q (Σ). Note that, by definition, all
vertex classes and their formal inverses are in the center.

Define α(k) to be the multicurve consisting of k copies of α that are parallel in the direc-
tion of the framing of α. Since at every end point of α, the framing is vertical. Thus, if α
is a V -tangle, then α(k) is also a well-defined V -tangle. For any polynomial P =

∑
k ckx

k,
then αP :=

∑
ckα

(k) is the threading of P along α. If α is represented by a V -tangle di-
agram without any self intersection, e.g., α ∈ B(Σ, V )+, then α(k) = αk ∈ SMRY

q (Σ) and
αP = P (α). The definition is extended linearly to skeins in SMRY

q (Σ).

Central elements of the ordinary skein algebra Sq(Σ) come from a threading opera-
tion [BW16] of Chebyshev polynomials. Our main task in this section is to generalize
the threading appropriately to include arc classes as well. In [BW16], for the Kauff-
man bracket skein algebra Sq(Σ), it was shown that there is an algebra monomorphism
Φ : S1(Σ) → Sq(Σ), which is called the Chebyshev–Frobenius homomorphism. This homo-
morphism extends to the one between stated skein algebras Φ : SL+

1 (Σ) → SL+
q (Σ) in

[BL22], as we describe below. Note that in this setup, there is no arc class ending at inte-
rior punctures.
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For any loop α ∈ SL+
1 (Σ), we define Φ(α) := αTn , where Tn(x) is the n-th Chebyshev

polynomial recursively defined as

T0(x) = 2, T1(x) = x, Tk+2(x) = xTk+1(x)− Tk(x).

For any arc α ∈ SL+
1 (Σ) connecting boundary marked points, we set Φ(α) := α(n). If

we have a disjoint union of arcs and loops, we take the disjoint union of the threading of
each component. It induces a well-defined algebra homomorphism Φ : SL+

1 (Σ)→ SL+
q (Σ)

[BL22, Theorem 2]. Under the existence of interior punctures, this algebra homomor-
phism can be extended to

(4) Φ : C[v±i ]⊗C SL+
1 (Σ)→ C[v±i ]⊗C SL+

q (Σ).

One may check that the morphism Φ induces a similar map

(5) Φ : C[v±i ]⊗C SL
1 (Σ)→ C[v±i ]⊗C SL

q (Σ)

because for any peripheral loop ℓv, ℓTn
v − 2 is in the ideal generated by ℓv − (q + q−1).

Since SL
1 (Σ) is commutative, so is its image im Φ. Moreover, based on earlier work

of [Lê15, BW16, BL22], it was shown that im Φ ⊆ Z(SL
q (Σ)) [Yu23, Corollary 4.3]. Since

SMRY
q (Σ) can be understood as a subalgebra of SLRY

q (Σ) (Proposition 2.9), we obtain the
following result.

Lemma 3.1. (1) Let α ∈ SMRY
q (Σ) be a loop class on Σ. Then αTn is central. In particular, if

α does not have any self-intersection, Tn(α) is central.
(2) Let β ∈ SMRY

q (Σ) be an arc class on Σ connecting two boundary marked points. Then β(n)

is central. In particular, if β does not have any self-intersection, βn is central.

Proof. For a loop α ∈ SMRY
q (Σ), m(αTn) = αTn ∈ SLRY

q (Σ). And αTn is also in SL
q (Σ) and

it is central there. So it remains to check that it is commutative with arc classes join-
ing an interior puncture and another marked point (either interior puncture or boundary
marked point). Since αTn does not intersect any interior punctures, we may check lo-
cally its transparency with every arc class following the argument in [Lê15, Corollary
2.3]. Hence αTn ∈ Z(SLRY

q (Σ)). Since m is a monomorphism, we may conclude that
αTn ∈ Z(SMRY

q (Σ)). This proves (1). For part (2), this follows from [BL22]. □

We also obtain the following central element.

Lemma 3.2. For each component D of ∂Σ with boundary edges β1, β2, · · · , βk in any order, the
product

∏
i βi is central.

Proof. For simplicity, consider first the case where β1, β2, · · · , βk is in cyclic order. Set
βk+1 := β1, and let βD :=

∏
i βi in that case. The boundary class is disjoint with all loop

classes, it is sufficient to check the commutativity with an arc γ whose end is a boundary
marked point v on D, between βi and βi+1. Using the height exchange relation (E) in
Definition 2.1 twice, we can exchange the order of γ and β1β2. During this process we
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need to multiply qq−1, so γβ1β2 = β1β2γ. If both ends of γ meet D, we may apply the
argument twice.

For the more general case, note that the order of the product
∏

i βi does not really matter
indeed. For any permutation σ ∈ Sk and a product

∏
i βσ(i), applying the relation (E) in

Definition 2.1, we can conclude that
∏

i βσ(i) is equal to qt
∏

i βi = qtβD for some t ∈ Z,
hence it is central, too.

□

Combining Item (2) of Lemma 3.1 and Lemma 3.2, we obtain the following result. We
fix a boundary component D of ∂Σ, where D has k marked points. Let β :=

∏
i β

mi
i be a

product of boundary arcs on D with multiplicity vector degD(β) := (mi) ∈ ZD.

Corollary 3.3. The product of boundary arcs β is in Z(SMRY
q (Σ)) if and only if degD(β) = (mi)

is in the sublattice MD = ⟨ne1, ne2, . . . , nek,
∑k

i=1 ei⟩ ⊂ ZD.

Proof. Note that degD(βD) =
∑

i ei and degD(β
n
i ) = nei. We know that they are central.

For any β with degD(β) ∈ MD, up to a scalar multiple by qt, β is a product of βD and βn
i ,

hence β ∈ Z(SMRY
q (Σ)).

Conversely, suppose that degD(β) =
∑

miei /∈MD. Eliminating βD and βn
i if necessary,

we may assume that (mi) is nontrivial, 0 ≤ mi < n and there is one coefficient (say m1)
which is zero. We may explicitly compute that ββ1 = qm2β1β. Since 0 < m2 < n, qm2 ̸= 1

and β is not central. □

We now turn our attention to new arc classes that connect some interior punctures.

Lemma 3.4. Let β be an arc class connecting a boundary puncture b and an interior puncture v.
Suppose β does not admit any self-intersection on its diagram. Then βn is central.

Proof. Using (D), (E), and Reidemeister moves,

βn =



v−(n−1)/2qn(n−1)/4 if n is odd,

v−n/2qn(n−1)/4 if n is even,



CENTER OF GENERALIZED SKEIN ALGEBRAS 13

where the heights of endpoints at b increase in counter-clockwise. Let [βn] denote

or depending on the parity of n. It suffices to show that [βn] is central to show

the claim.

For any V -tangle diagram γ, we show that [βn]γ = γ[βn]. First we consider 3 cases
where γ meets β:

(1) γ intersects with β just once at b,
(2) γ intersects with β just once only at v,
(3) γ intersects with β just once in IntΣ \ V .

In the first case, we have γ[βn] = q−n[βn]γ = [βn]γ using (E) and Reidemeister moves.

Next, we consider the second case. When n = 3,

vγ[β3] = v = q1/2 + q−1/2

= q1/2 + q−3/2 = q3/2 + q−3/2

= q3/2[β2]R + q−3/2L[β2],

where the numbers below each picture denote the height information of the three strands
incident to b. A smaller number implies the corresponding strand is higher. We denote
R and L by the middle and right (partial) arcs in Figure 4 respectively, and the equalities
follows from (D), (E) and Reidemeister moves. By the same argument, we also have
v[β3]γ = q−3/2[β2]R+ q3/2L[β2]. Since q is a root of unity of order n, we have [β3]γ = γ[β3].

For a general n, it is a routine computation to check

[βn]γ = qn/2[βn−1]R + q−n/2L[βn−1] = q−n/2[βn−1]R + qn/2L[βn−1] = γ[βn]

when q is a root of unity of order n.
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FIGURE 4. Left: (partial) picture of γ, Middle: (partial) picture of R,
Right: (partial) picture of L, Outside the shaded part, the three arcs are the
same.

In the third case, using (D) and Reidemeister moves,

= vq1/2 − q

= vq1/2 − q = ,

where the heights of endpoints at the boundary marked point increase in counter-clockwise
and the second equality holds from the second case.

The above three cases show [βn] is ‘transparent.’ Thus, for any diagram γ, [βn] com-
mutes with γ. Thus, we may conclude that [βn] is a central element. □

Finally, we show the centrality of an element coming from an arc class connecting punc-
tures. For the degree n Chebyshev polynomial Tn(x), consider the formal expression

1√
v
√
w
Tn(
√
v
√
wx).

Remark 3.5. Let β be an arc class connecting two distinct interior punctures v and w.
Even though SMRY

q (Σ) does include the square roots of v and w, the arc class β threaded
by 1√

v
√
w
Tn(
√
v
√
wx) remains an element of SMRY

q (Σ). This is because Tn(x) has only odd
degree terms, thus every power of v and w are integers, not half integers. For example,
one can check that

1√
v
√
w
T3(
√
v
√
wx) = vwx3 − 3x,

1√
v
√
w
T5(
√
v
√
wx) = v2w2x5 − 5vwx3 + 5x, · · · .

For example, then β threaded by 1√
v
√
w
T3(
√
v
√
wx) is the skein vwβ(3) − 3β.

Remark 3.6. When β whose diagram does not admit any self-intersections, then β threaded
by 1√

v
√
w
Tn(
√
v
√
wx) is identical to the skein 1√

v
√
w
Tn(
√
v
√
wβ). However, this is not in

general true for diagrams with self-intersection.

Remark 3.7. We may also understand the element 1√
v
√
w
Tn(
√
v
√
wβ) as a homogenization

of Tn(β) with respect to the ZV◦-grading.
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Lemma 3.8. Let β be an arc class connecting two distinct interior punctures v and w, without any
self-intersection on its diagram. Then β threaded by the polynomial 1√

v
√
w
Tn(
√
v
√
wx) is central.

Proof. The centrality was first observed in [Kar24, Corollary 5.3]. In [Kar24], it was calcu-
lated in a degenerated version of the skein algebra that one can obtain by setting v = 1

for all vertices. To make the same proof work in SMRY
q (Σ), we need to allow a resolution

using the puncture-skein relation whenever there are two arc classes meeting at the same
interior puncture. Multiplying

√
v
√
w on β enables us that such a resolution is possible,

because whenever we have two arc components meeting at v, we will have (
√
v)2 = v.

Using exactly the same computation with [Kar24, Section 5], we obtain the centrality. □

Remark 3.9. We do not need to consider the case that β is an arc whose two ends are the
same interior puncture v. This is because after multiplying by v, then vβ is the sum of two
loops, hence it is in im Φ.

Remark 3.10. We observed that the Chebyshev-Frobenius morphism Φ : SL
1 (Σ)→ SL

q (Σ)

does not extend to Φ : SMRY
1 (Σ) → SMRY

q (Σ) as an algebra homomorphism. Using the
basis B(Σ, V )+, we obtain an extended linear map Φ : SMRY

1 (Σ) → SMRY
q (Σ), but it does

not preserve the skein relations.

4. CHARACTERIZATION OF THE CENTER

In this section, we prove Theorem A. The outline of the proof is as follows: In Section 3,
we showed that the elements in the statement of Theorem A are central. To show that they
generate the center, we will follow a strategy adapted by Frohman, Kania-Bartoszynska,
Lê [FKBL19], Korinman [Kor21], and Yu [Yu23]. Suppose that we have a total term order
on the set B(Σ, V )+ of reduced multicurves, which behaves nicely with respect to the
multiplication. For any central element z, we show that the leading term of z is equal
to the leading term of an element z′ that can be described in terms of the elements in
Theorem A. Then we may apply the deduction. To realize this strategy, in Section 4.1, we
introduce a generalized version of the well-known edge coordinates allowing us to define
the coordinates for ideal arcs as well.

4.1. Generalized edge coordinates for B(Σ, V ) and B(Σ, V )+. We fix an ideal triangula-
tion ∆ on Σ. Recall that V = V◦ ⊔ V∂ is the set of vertices in ∆ and E is the set of edges in
∆. We say that an edge e is a boundary edge if e ⊆ ∂Σ and is an interior edge otherwise.
By a corner, we mean a pair (T, {e1, e2}) where T is a triangle in ∆ and e1, e2 are two edges
of T , and let the set of all corners be denoted by C.

Recall that SLRY
q (Σ) has basis B(Σ, V ) consisting of increasingly stated, positively or-

dered simple tangles. Up to isotopy, we may assume that a simple tangle diagram α ∈
B(Σ, V ) is in normal position with respect to ∆, and there is no turning back over each
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edge e ∈ E. Then the edge coordinate f(α) ∈ ZE is defined by f(α)(e) = |α∩e|, the intersec-
tion number between α and e. Since any diagram α does not intersect any vertices in V ,
it also admits a well-defined corner coordinate g(α) ∈ ZC that counts the number of com-
ponents around each corner c ∈ C. These two coordinate systems are equivalent – there
is an explicit coordinate change formula. See [Mat07, Section 3.2]. Once one imposes a
total order on E, we may induce a lexicographical order on ZE . This provides an order
on B(Σ, V ). This order is nearly a total order – the only non-distinguishable elements are
the same topological simple tangle diagrams with two different states.

Now, we move to SMRY
q (Σ). For α ∈ B(Σ, V )+, we define edge coordinates f(α) ∈ 1

2
ZE

as follows, using the square trick. We fix a term order on E, and hence on ZE . Sup-
pose that α ∈ B(Σ, V )+ does not intersect any interior puncture, hence degV (α) = 0.
Then applying the moving trick, we may identify SMRY

q (Σ) with a subalgebra of SLRY
q (Σ)

(Proposition 2.9). In particular, α can be identified with a curve in SLRY
q (Σ) without any

intersection with interior punctures or boundary marked points with + states. Thus, we
obtain well-defined edge coordinates.

If α ∈ B(Σ, V )+ but degV (α) ̸= 0, then because at most one α ∈ B(Σ, V )+ ends at any
interior bundary puncture, degV (α) ∈

∑
v∈W ev for some subset W ⊂ V◦. So if we take

α2
∏

v∈W v, it is a linear combination of reduced multicurves with degV = 0. Thus for each
term, the edge coordinate is well-defined. We denote ltf (α

2
∏

v∈W v) by the leading term
of {f(αi)} ∈ ZE where {αi} is the set of reduced multicurves that appear on α2

∏
v∈W v.

We may define the generalized edge coordinate as

(6) f(α) :=
1

2
ltf (α

2
∏
v∈W

v) ∈ 1

2
ZE.

Remark 4.1. We have an explicit formula for f(α). Note that if α, α′ ∈ B(Σ, V )+ are
disjoint, then f(αα′) = f(α) + f(α′). Thus, it is sufficient to describe the formula for arc
classes ending at an interior puncture. The case of a loop class is classical.

Suppose that α is an arc class connecting two distinct punctures v, w ∈ V◦. Let E(v) be
the set of edges adjacent to v. Then

f(α) =


1
2

(∑
t∈E(v) et +

∑
t∈E(w) et

)
+
∑

p∈t∩α et, if α is not an edge in ∆,
1
2

(∑
t∈E(v) et +

∑
t∈E(w) et

)
− es, if α is an edge s ∈ ∆.

On the other hand, suppose that α is an arc class connecting one puncture v and a marked
point w. Let α be a topological arc connecting v and a boundary component near w,
obtained by applying the moving trick. Then

f(α) =
1

2

∑
t∈E(v)

et +
∑
p∈t∩α

et.
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We may interpret the formula like this: f(α) is obtained from the ‘ordinary edge coor-
dinates’

∑
p∈t∩α et by modifying it with the contribution of each interior puncture.

Remark 4.2. We may also define the generalized corner coordinate for α ∈ B(Σ, V )+ as
in [MW21, Section 6]. But it does not have a simple computational formula, so we do
not use it here. In the proof in the next section, we use both edge coordinates and corner
coordinates. However, corner coordinates are used only for the curve classes without
intersecting any marked points.

4.2. Proof of Theorem A. We fix an ideal triangulation ∆ on Σ. Recall that V is the
set of vertices in ∆ (hence equal to the set of marked points), V◦ is the set of interior
punctures, and E is the set of edges in ∆. We fix a total term order on E. Then via the
generalized edge coordinate we introduced in Section 4.1, we obtain the total order on
the set B(Σ, V )+.

The goal of this section is to prove that any central element z ∈ Z(SMRY
q (Σ)) can be

given by the central elements in Section 3. We first show that we may replace an arbitrary
z by a simpler element.

Lemma 4.3. Let R =
⊕

n∈Zk Rn be a Zk-graded algebra and z =
⊕

n zn ∈ R with zn ∈ Rn.
Then z ∈ Z(R) if and only if zn ∈ Z(R) for all n ∈ Zk.

Proof. Suppose zn ∈ Z(R) for all n ∈ Zk. Then for any z′ ∈ R, zz′ = (
∑

zn)z
′ =

∑
znz

′ =∑
z′zn = z′(

∑
zn) = z′z and z ∈ Z(R).

Conversely, assume z ∈ Z(R). Now take a homogeneous z′ ∈ Rm. Then 0 = zz′− z′z =

(
∑

zn)z
′−z′(

∑
zn) =

∑
(znz

′−z′zn). Since all znz′−z′zn are in the different graded parts,
znz

′ − z′zn = 0. Thus, zn is commutative with z′ for all n. Any element z′ ∈ R is a finite
sum of homogeneous elements. Thus, we can conclude zn ∈ Z(R) for all n. □

Note that SMRY
q (Σ) is a ZV◦-graded algebra. For a central element z ∈ Z(SMRY

q (Σ)), it
is sufficient to show that each graded piece can be generated by the central elements in
Section 3. So from now on, we will assume that z is homogeneous with respect to the
ZV◦-grading.

The next lemma tells us that we may assume that there is no contribution of vertex
classes on z.

Lemma 4.4. Let z ∈ Z(SMRY
q (Σ)) be a homogeneous element with respect to the degree degV .

Then after multiplying a Laurent monomial m(v) with respect to vertices, z is a C-linear combi-
nation of diagrams in B(Σ, V )+. In particular, degV z =

∑
v∈W ev for some W ⊂ V◦.

Proof. Let degV (z) =
∑

avev. Then z can be written uniquely as a linear combination∑
cimi(v)αi, where ci ∈ C, αi ∈ B(Σ, V )+, and mi(v) is a Laurent monomial with respect

to the vertex classes. Since each αi is in B(Σ, V )+, for each interior puncture v, there
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must be at most one arc component ending at v and the degree is one or zero at v. So
degV (αi) ∈ {0, 1}V◦ . On the other hand, degV (mi(v)) ∈ 2ZV◦ . Therefore, all αi must have
the same degree. This implies that mi(v) are all identical. Hence by multiplying mi(v)

−1,
we may assume that z =

∑
ciαi and degV z =

∑
v∈W ev for some W ⊂ V◦. □

Lemma 4.5. Let f : B(Σ, V )+ → 1
2
ZE be the generalized edge coordinate function defined in

Section 4.1. If α, α′ ∈ B(Σ, V )+ and f(α) = f(α′), then α = α′. In other words, the edge
coordinate defines the curve α ∈ B(Σ, V )+ uniquely.

Proof. Since the height information does not affect to show the claim, we ignore the infor-
mation in the proof.

Let degV (α) =
∑

v∈W ev for some W ⊂ V◦. The leading term lt(α2
∏

v∈W v) is obtained
by the following recipe. For each component not meeting an interior puncture, square
the component. For an arc component β connecting two interior punctures, replace it by
a loop pβ surrounding β. For an arc component γ connecting an interior puncture v and a
boundary marked point w, replace it by a boundary loop rγ of a once-punctured monogon
surrounding v. By reversing this procedure, we have that the original curve α can be
uniquely recovered from ltf (α

2
∏

v∈W v). From f(α) = f(α′), we know ltf (α
2
∏

v∈W v) =

ltf (α
′2∏

v∈W ′ v). Since the corner coordinates for ordinary reduced multicurves uniquely
recover the curve, we have ltf (α

2
∏

v∈W v) = ltf (α
′2∏

v∈W ′ v), hence α = α′. □

Thus, we may define the total order on B(Σ, V )+ by using f : B(Σ, V )+ → 1
2
ZE and any

lexicographical order on 1
2
ZE .

Lemma 4.6. Let α1, α2 ∈ B(Σ, V )+ such that degV (α1) = degV (α2) =
∏

v∈W ev for some
W ⊂ V◦. Then for any resolution β of α1α2

∏
v∈W v,

f(β) ≤ f(α1) + f(α2).

Proof. First, we take a ‘partial resolution’ β′ of α1α2

∏
v∈W v, by choosing a resolution for

each vertex v ∈ W . We show that f(β′) ≤ f(α1) + f(α2). Note that the formula of f(β′)

is obtained by looking at the contribution of its change on the neighbor of v ∈ W (E(v)

in Remark 4.1). We understood all curves after applying the moving trick, so none of the
curves meet the boundary marked point.

We divide it into several cases.

Case 1. Near v ∈ W , α1 and α2 are not edges in ∆. See Figure 5. f(α1) + f(α2) provides
one for each edge in E(v), while each resolution contributes either 0 or 1 for each edge.

Case 2. Near v ∈ W , α1 is not an edge in ∆, but α2 is an edge s in ∆. See Figure 6. In
particular, one may see that in f(α1) + f(α2), the contribution of E(v) of the edge coordi-
nate for s is 1

2
. On the other hand, for some resolution, the calculated intersection number

along s is (at most) one, so it looks larger than that of f(α1)+f(α2). However, note that in
this case, the other end v′ of α2 is also a marked point in V . If it is an interior puncture v′,
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FIGURE 5. Comparison of f(α1) + f(α2) and resolutions of vα1α2. The sec-
ond row shows two resolutions of vα1α2 and their edge coordinates.

then v′ ∈ W . Since degV (α1) = degV (α2), the other end of α1 is at v′. Then by combining
the contributions from E(v) and E(v′), we still can obtain the desired inequality. If v′ is a
boundary marked point, around v′, mov(α2) passes through the interior of an edge. See
Figure 7. Then the calculation of the edge coordinate is reduced to Case 1.

Case 3. Near v ∈ W , both α1 and α2 are two distinct edges s1, s2 in ∆. We may argue as
in the previous case. See Figure 8.

Case 4. Near v ∈ W , α1, α2 are the same edge s ∈ ∆. In this case, there is only one
resolution that makes a non-periperal and non-contractible loop, and the contribution is
equal to that of f(α1) + f(α2). Consult Figure 9.

Thus, for any case, f(β′) ≤ f(α1) + f(α2). For any full resolution β of β′ obtained
by taking an interior resolution, we know f(β) ≤ f(β′). Thus, we obtain the desired
result. □

Lemma 4.7. Let z =
∑

ciαi ∈ SMRY
q (Σ) be a homogeneous element of degV (z) =

∑
v∈W ev

for some W ⊂ V◦ with a term order f(α1) > f(α2) > · · · > f(αk). Then ltf (z
2
∏

v∈W v) =

ltf (α
2
1

∏
v∈W v).

Proof. It is sufficient to show that if f(α1) > f(α2), ltf (α2
1

∏
v∈W v) > ltf (α1α2

∏
v∈W v). By

definition, ltf (α2
1

∏
v∈W v) = 2f(α1). On the other hand, Lemma 4.6 implies that for any

term β in α1α2

∏
v∈W v, f(β) ≤ f(α1) + f(α2). Thus, ltf (α1α2

∏
v∈W v) ≤ f(α1) + f(α2).

Therefore,
f(α1α2

∏
v∈W

v) ≤ f(α1) + f(α2) < 2f(α1) = f(α2
1

∏
v∈W

v),

where the second inequality holds from the assumption. □

Our proof relies on the computation of Z(SL+

q (Σ)) by Korinman in [Kor21] that we
restate here.
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FIGURE 6. Comparison of f(α1)+f(α2) and resolutions of vα1α2, in the case
that α2 has an edge component. The second row shows two of resolutions
of vα1α2 and their edge coordinates.

FIGURE 7. Comparison of f(α1)+f(α2) and resolutions of vα1α2, in the case
that one end of α2 is a boundary marked point.

Theorem 4.8 ([Kor21, Theorem 6.3]). Let q ∈ C∗ be the n-th root of unity. The center of SL+

q (Σ)

is generated by the image of Chebyshev–Frobenius homomorphism Φ, peripheral loops, the product
of boundary classes βD for each boundary component D ⊂ ∂Σ (Lemma 3.2), and β−1

D .

We lift the description of the center to that of SM+
q (Σ).

Lemma 4.9. Let R be a C-algebra which is a domain, and S be a multiplicative subset of R. Let
S−1R be the left Ore localization of R by S. Then Z(R) = Z(S−1R) ∩R.

Proof. Suppose that a ∈ Z(R). by the inclusion R ↪→ S−1R, we may identify a with 1−1a.
Take s−1r ∈ S−1R. Note that from a ∈ Z(R), as = sa, so as−1 = s−1a. By the definition of
the multiplication in the non-commutative localization,

(1−1a)(s−1r) = 1−1s−1ar = (s1)−1ar = s−1ra = (1s)−1ra = s−11−1ra = (s−1r)(1−1a).
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FIGURE 8. Comparison of f(α1)+f(α2) and resolutions of vα1α2, in the case
that both α1 and α2 have distinct edge components. The second row shows
two of resolutions of vα1α2 and their edge coordinates.

FIGURE 9. Comparison of f(α1)+f(α2) and resolutions of vα1α2, in the case
that both α1 and α2 have the same edge component. The second row shows
the nonconstant resolution of vα1α2.

Therefore, a = 1−1a ∈ Z(S−1R). Hence Z(R) ⊂ Z(S−1R) ∩R.

Conversely, suppose that 1−1a ∈ Z(S−1R) ∩ R. By the assumption, for any 1−1b ∈ R,
(1−1a)(1−1b) = (1−1b)(1−1a). But from (1−1a)(1−1b) = 1−1ab and R ↪→ S−1R, we obtain
ab = ba for all b ∈ R. Therefore, a ∈ Z(R). □

Proposition 4.10. Let q ∈ C∗ be the n-th root of unity. The center of SM+
q (Σ) is generated

by the image of the Chebyshev–Frobenius homomorphism Φ, peripheral loops, and the product of
boundary classes βD for each boundary component D ⊂ ∂Σ (Lemma 3.2).

Proof. We have SL+

q (Σ) ∼= SM+
q (Σ)[∂−1] [KMW25+]. Under this identification, the generat-

ing sets are the image of Φ : SM+
1 (Σ) → SM+

q (Σ), peripheral loops, and βD, β−1
D , and β−n

i

for each boundary arc βi. The image of Φ, peripheral loops, βD are elements in SM+
q (Σ).

Lemma 4.9 implies that Z(SM+
q (Σ)) is generated by the described elements. □

We are ready to prove Theorem A.
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Proof of Theorem A. Take a central element z ∈ Z(SMRY
q (Σ)). Applying Lemma 4.3, we

may assume that z is homogeneous with respect to degV . By multiplying some product of
vertices, we may assume that z =

∑k
i=1 cizi with ci ∈ C and zi ∈ B(Σ, V )+. We may further

assume that f(z1) > f(z2) > · · · > f(zk). Let degV (z) =
∏

W⊂V◦
ev. Consider z2

∏
v∈W v.

Then, ltf (z2
∏

v) = ltf (z
2
1

∏
v).

We may write z1 ∈ B(Σ, V )+ uniquely as

(7) z1 =
∏

αmi
i

∏
p
mj

βj
βj

∏
rmk
γk

γk
∏

rmℓ
δℓ

∏
ηs

ms

up to a power of q, where:

(1) αi is a loop class;
(2) βj is an arc class connecting two distinct interior punctures vj and wj ;
(3) pβj

is a loop surrounding βj ;
(4) γk, δℓ are arc classes connecting one interior puncture xk and one boundary marked

point;
(5) rγk , rδℓ are arc classes bounding a once-punctured monogon surrounding γk and δℓ

respectively, and;
(6) ηs is an arc connecting two boundary marked points,

and none of the curves are isotopic to each other. All curves in the above description are
disjoint and non-isotopic except at some of the boundary marked points. See Figure 10
for an example.

FIGURE 10. A presentation of the leading term in (7)

In Lemma 4.7, we showed that ltf (z2
∏

v∈W v) = ltf (z
2
1

∏
v∈W v). By a direct computa-

tion, we have

z21
∏
v∈W

v =
∏

α2mi
i

∏
p
2mj

βj
(pβj

+ 2)
∏

r2mk+1
γk

∏
r2mℓ
δℓ

∏
ηs

2ms .

Thus,

(8) ltf (z
2
1

∏
v∈W

v) =
∏

α2mi
i

∏
p
2mj+1
βj

∏
r2mk+1
γk

∏
r2mℓ
δℓ

∏
ηs

2ms

and this is the leading term of z2
∏

v∈W v.
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On each boundary component D of ∂Σ, we may find a maximum xD ∈ Z≥0 such that z1
is a multiple of βxD

D . Set yD as the unique integer such that yD ≡ xD mod n and 0 ≤ yD < n.

Since z2
∏

v∈W v ∈ Z(SMRY
q (Σ)) and deg◦(z

2
∏

v∈W v) = 0, we may regard its image
as an element in SM

q (Σ), which is central. We may also think it as a central element in
SM+
q (Σ) without any peripheral components. And ltf (z

2
1

∏
v∈W v) is the leading term of a

central element z2
∏

v∈W v. By the above argument, z21
∏

v∈W v is generated by the image of
Chebyshev–Frobenius homomorphism Φ and boundary central elements, i.e. an element
of the form βD for some component D ⊂ ∂Σ. Then∏

α2mi
i

∏
r2mℓ
δℓ

∏
ηs

2ms
∏

β−2yD
D

is generated by the image of Chebyshev–Frobenius homomorphism Φ.

If α′ is the leading term of an element in the image of Φ, then all of its edge coordinates
are multiples of n. Because n is odd, it also implies that all of the corner coordinates are
also multiples of n. As all corner coordinates coming from

∏
α2mi
i

∏
r2mℓ
δℓ

∏
ηs

2ms
∏

β−2yD
D

are multiples of n and multiples of two, we may take a reduced multicurve α′ whose
corner coordinates are that of

∏
α2mi
i

∏
r2mℓ
δℓ

∏
ηs

2ms
∏

β−2yD
D divided by 2n. Moreover,

the corner coordinates coming from
∏

p
2mj+1
βj

∏
r2mk+1
γk

are also multiples of n. So we
obtain n|2mj + 1 and n|2mk + 1. Then 2mj + 1 = n(2tj + 1) for some tj ∈ Z, hence mj can
be written as n−1

2
+ tjn. So is mk. Now∏
p
mj

βj
βj

∏
rmk
γk

γk =
∏

p
n−1
2

+tjn

βj
βj

∏
r

n−1
2

+tkn
γk γk

=
∏

p
n−1
2

βj
βj

∏
(pnβj

)tj
∏

r
n−1
2

γk γk
∏

(rnγk)
tk .

The latter is indeed, up to a constant multiple, the leading term of

(9) z′′ :=
∏ 1
√
vj
√
wj

Tn(
√
vj
√
wjβj)Tn(pβj

)tj
∏

γn
k

∏
(rnγk)

tk .

Now set z′ := Tn(α
′)z′′

∏
βyD
D . Then z′ is a product of central elements listed in The-

orem A. By taking z − z′, we have a central element with a smaller leading term. The
deduction procedure terminates in finite steps since the edge coordinates are in Zk

≥0, and
we obtain the desired result. □

The same argument indeed describe the center of Z(SMRY
q (Σ)[∂−1]). For the future ref-

erence (mostly because of its relationship with cluster algebra [KMW25+]), we leave the
statement and the proof.

Theorem 4.11. Let q ∈ C∗ be a primitive n-th root of unity for odd n. The center Z(SMRY
q (Σ)[∂−1])

is a C[v±i ]-subalgebra generated by the elements in the statement of Theorem A and

(1) For a boundary arc class β, β−n;
(2) For each component D of ∂Σ, β−1

D .
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Proof. For a central element z ∈ Z(SMRY
q (Σ)[∂−1]), by multiplying sufficient boundary

central elements, denoted by α, we may assume αz ∈ Z(SMRY
q (Σ)). From the above argu-

ment, z is generated by the central elements listed in Theorem A. Since α−1 ∈ Z(SMRY
q (Σ)[∂−1]),

we conclude z = α−1(αz) ∈ Z(SMRY
q (Σ)[∂−1]) and z is generated by central elements listed

in Theorem A and the inverses of boundary central elements. □

5. ALMOST AZUMAYA ALGEBRAS

In this section, we investigate the representation theory of SMRY
q (Σ).

5.1. (Almost) Azumaya algebra and its representation theory. Let us first review basic
knowledge on (almost) Azumaya algebras following [MR01]. See also [FKBL19]. Recall
that a C-algebra A is Azumaya if A is finitely generated projective Z(A)-module and the
natural morphism

A⊗Z(A) A
op → EndZ(A)A

of A-modules is an isomorphism. By Artin-Wedderburn theorem, if Z(A) = C, then
A ∼= Mn(C) for some n. If Z(A) is a finitely generated C-algebra, then over the associated
affine algebraic variety MaxSpec Z(A), A can be understood as a continuous family of
matrix algebras. Indeed, there is a well-known correspondence between MaxSpec Z(A)

and the set of maximal ideals in Z(A). If we take a maximal ideal m ⊂ Z(A), Z(A)/m ∼= C
and its fiber A ⊗Z(A) Z(A)/m is a central simple algebra over Z(A)/m ∼= C. In particular,
it is isomorphic to a matrix algebra Mn(C) for some n. Since A is projective, it is locally
free, hence n is independent from the choice of m. The number n is called the PI degree.

A C-algebra A is almost Azumaya if there is an element c ∈ Z(A) \ {0} such that its
localization Ac is Azumaya. For an affine algebraic variety, a localization corresponds to
taking a Zariski open subset. Thus, being almost Azumaya implies that there is a Zariski
open subset U ⊂ MaxSpec Z(A) such that Ac is a family of matrix algebras over U . Note
that if Z(A) is an integral domain, U is an open dense subset of MaxSpec Z(A).

The representation theory of an Azumaya algebra is very nice. Let A be an Azumaya
algebra with a finitely generated center Z(A). Suppose that V is a finite dimensional
irreducible representation of A. Then the center Z(A) acts as a scalar multiple on V . If we
denote m ⊂ Z(A) by the set of elements acting as the zero map is indeed a maximal ideal.
Hence V induces a representation of A⊗Z(A)Z(A)/m ∼= Mn(C). Since the only irreducible
representation of Mn(C) is Cn, dimV = n. In summary, any irreducible representation of
A is of dimension n, and there is a bijection between the set Irrep(A) of finite dimensional
irreducible A-representations and MaxSpec Z(A).

Suppose that A is an almost Azumaya with a finitely generated center Z(A). We retain
the same notation in the above discussion. Let V be a finite dimensional irreducible rep-
resentation of A. As before, its center Z(A) acts as a scalar multiple and we may choose a
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maximal ideal m ⊂ Z(A) acting as zero on V . If m ∈ U ⊂ MaxSpec Z(A), then the localiz-
ing element c /∈ m and acts as a nonzero scalar. Thus, V has a Ac-representation structure.
Since Ac is Azumaya, we know dimV = n and there is only one such a representation.

We summarize the above discussion.

Proposition 5.1. Let A be an almost Azumaya algebra and Z(A) is a finitely generated integral
domain. Let c ∈ Z(A) such that Ac is Azumaya over Z(A)c. Let U = MaxSpec Z(A)c ⊂
MaxSpec Z(A). Then the following holds.

(1) There is an injective map χ : U → Irrep(A).
(2) Any irreducible representation V ∈ χ(U) has the same dimension, that is the PI degree

of Ac.

Remark 5.2. The map χ : U → Irrep(A) can be obtained as the following. For any maximal
ideal m ∈ U , A/mA ∼= Ac/mAc

∼= Mn(C). Thus, up to isomorphism, there is a unique n-
dimensional A/mA-representation V . The A-representation structure is induced by the
epimorphism A→ A/mA ∼= EndCV .

5.2. SMRY
q (Σ) is almost Azumaya. We now show that SMRY

q (Σ) is almost Azumaya. The
following characterization of almost Azumaya algebras is particularly useful:

Theorem 5.3 ([BG02, III.1.7], [FKBL19, Theorem 2.7]). Let A be a C-algebra. Suppose A is

(1) finitely generated as a C-algebra;
(2) prime;
(3) finitely generated as a Z(A)-module.

Then, A is almost Azumaya.

For SMRY
q (Σ), Item (1) is known in [BKWP16, BKL24, KMW25+]. For Σ = Σ0,n, a genus

0 surface with n punctures but without any boundary, an explicit presentation is also
known [ACDHM21]. Item (2) is obtained in [BKL24] as a consequence of an embedding
into a quantum torus. By checking Item (3), we show that SMRY

q (Σ) is almost Azumaya
(Proposition 5.5). The argument here is a minor variation of [BKL24, Section 6.2], modi-
fying the setting with vertex classes.

Let P = [Pij] be an n × n integral skew-symmetric matrix. We may define the the
quantum torus T(P ) as a non-commutative C-algebra

(10) C⟨x±
1 , x

±
2 , · · · , x±

n ⟩/(xixj = qPijxjxi).

We also obtain a positive subalgebra T+(P ) ⊂ T(P ) generated by x1, x2, · · · , xn.

We use the following result.

Lemma 5.4 ([KW24, Lemma 8.5]). Let P = [Pij] be a skew-symmetric integral matrix. Let A
be a finitely generated C-algebra such that T+(P ) ⊂ A ⊂ T(P ). Then A is almost Azumaya and
the PI degree of A is equal to that of T(P ).
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Proposition 5.5. Let q be a root of unity. Let Σ be a triangulable marked surface with at least one
boundary marked point. Then:

(1) There is a quantum torus T(P ) such that

(11) T+(P ) ⊂ SMRY
q (Σ) ⊂ T(P ),

where T+(P ) is the positive part of T(P ).
(2) The skein algebra SMRY

q (Σ) is almost Azumaya and its PI-degree is equal to that of T(P ).

Proof. The proof is a minor variation of [BKL24, Section 6.2]. For the reader’s convenience,
here we highlight an overall strategy and where we need to make a change.

For SMRY
q (Σ), we construct a quantum torus T(P ) such that the inclusions (11) hold.

Lemma 5.4 guarantees being almost Azumaya.

If Σ has no interior punctures, then SMRY
q (Σ) is the Muller’s skein algebra SM

q (Σ). In
this case, Muller constructed the quantum torus T(P ) in [Mul16, Theorem 6.14].

Next, we consider the case when Σ has at least one interior puncture. The desired
inclusions in (11) were shown in [BKL24, Equation (59)] without vertex classes. However,
the proof almost works for our setting including vertex classes. To apply the argument of
[BKL24, Section 6.2], we modify the definition of the skew-symmetric matrix P to obtain
a quantum torus.

First, we take a specific triangulation λ of Σ as follows. Fix a boundary marked point p.
For every interior puncture, take an embedded path connecting p. We may take the paths
in such a way that they do not intersect each other except at p. For each path, there is a
unique ideal arc with both endpoints at p which encircles the path. Cutting along Σ along
one of these ideal arcs removes a once-punctured monogon. We can choose the ideal arcs
so that they do not intersect each other except at p. Then we extend this collection of arcs
from p to interior punctures and ideal arcs surrounding them to an ideal triangulation λ

of Σ.

Let λ̄ denote the subset of λ obtained by removing all the ideal arcs. Let {vi} be the
set of interior punctures. We take I := λ̄ ⊔ {vi} as the set of generating variables of the
quantum torus we will construct. Then, define an skew-symmetric bilinear form PI on I

by

PI(e, e
′) := # −# , PI(vi, x) = 0 for any x ∈ I,

where there are possibly other arcs between the arcs shown in the picture. Regarding PI

as a matrix, we may construct a quantum torus T(PI) associated to PI .

Using the same argument as the proof of Theorem 6.5 in [BKL24], we obtain

T+(PI) ⊂ SMRY
q (Σ) ⊂ T(PI). □
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Observe that the Artin-Tate lemma [MR01, Lemma 13.9.10] implies that under the as-
sumptions of Theorem 5.3, Z(A) is a finitely generated C-algebra, thus MaxSpec Z(A) is
an affine algebraic variety. Applying the discussion in Section 5.1 to the skein algebra, it
follows that there is a Zariski open subset U of the variety MaxSpec Z(SMRY

q (Σ)) where
every point of U corresponds to a unique finite-dimensional irreducible representation of
SMRY
q (Σ). However, questions remain regarding the classification of such representations.

Question 5.6. (1) Describe the Azumaya locus U ⊂ MaxSpec Z(SMRY
q (Σ)) explicitly.

(2) For the Azumaya points m ∈ U , construct a finite dimensional irreducible repre-
sentation V of SMRY

q (Σ) geometrically.
(3) For the non-Azumaya points m /∈ U , classify corresponding finite dimensional

irreducible representations of SMRY
q (Σ).
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[BL22] W. Bloomquist and T. Lê. The Chebyshev–Frobenius homomorphism for stated skein mod-
ules of 3-manifolds. Math. Z. 301 (2022), no. 1, 1063–1105. 10, 11
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[Lê18] T. T. Q. Lê. Triangular decomposition of skein algebras. Quantum Topology 9 (2018), 591–632.

1, 3, 6, 7, 9
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