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Introduction - volume and area



Volume of a cone

The volume formula of a cone is
1
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where A is the area of the base and h is the height of the cone.



Volume of a cone

If we denote the distance from the apex by x, then the area of the

o 2 .
cross section is A (%)”. By the cross-section method,
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Question

Is there any simpler method to prove the formula than integral?



Area of a triangle

For a triangle, the area formula is %ab, where a is the length of the

base, b is the height.

To show this formula, nobody uses integral!

area of the triangle = area of the rectangle = %ab.
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Properties of the area

Here are several simple properties of the area:

e The area is a nonnegative real number.

The area of a point or a line segment is zero.

The area of a rectangle with width a and height b is ab.

If we cut a polygon A into n pieces Ay, As, -, A,, then

area(A) = area(A) + area(Ay) + - - - + area(A,,).



Scissors-congruence

Definition
Two polygons P and @ are called scissors-congruent if P can be

decomposed into finitely many polygonal pieces P, P, -+, P, which

can be reassembled to make Q.
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Two scissors-congruent polygons have the same area.



Scissors-congruence

Example: Tangram




Scissors-congruence
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Area of polygons

e Any polygon can be decomposed into triangles.

o

e A triangle is scissors-congruent to a rectangle, so we can compute

its area.

e The area of the polygon is the sum of areas of triangles.

We can evaluate the area of every polygon without using calculus!



Properties of volume

The volume is a nonnegative real number.
The volume of a point, a line segment, or a polygon is zero.

The area of a rectangular box with length a, width b, and height ¢

is abc.

If we cut a polyhedron P into n pieces Py, P, -+, P,, then
vol(P) = vol(Py) + vol(Py) + - - - + vol(Py,).

We can define the scissors-congruence for polyhedra.

Two scissors-congruent polyhedra have the same volume.



Hilbert's question

In 1900 ICM, Hilbert asked 23 important mathematical questions
(including Riemann'’s hypothesis, continuum hypothesis, sphere packing

problem). One of them is:
Question (Hilbert, 1900)

Are any two polyhedra P and @) with same volume scissors-congruent?



Hilbert's question

Question (Hilbert, 1900)
Are any two polyhedra P and Q with same volume scissors-congruent?

This question is important because if it is true, then we don't need to

take integral to evaluate the volume of a polyhedron!



Dehn's answer
Theorem (Dehn, 1900)

There are two polyhedra P and Q with same volume, which are not

SCiSSOI’S—COI'IgI’UGnt.

In particular, there are some polyhedra which are not scissors-congruent
to a rectangular box. Therefore, we have to use integral to evaluate the

volume of some polyhedra.




Dehn’s answer

Theorem (Dehn, 1900)

There are two polyhedra P and Q with same volume, which are not

scissors—congruent.

Wait, but... how can we prove the non-congruence (in other words,

impossibility of common decomposition) of two polyhedra?
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Linear maps



A functional equation

Consider a function f: R — R satisfying following functional equation:
fla+y) = flx)+ fy).

Then f has several interesting properties.

e f(0) = f(0+0)=f(0)+f(0) = f(0) =0

o f(22) = flz+x) = f(x) + f(x) =2f(x) = f(2z) =2f(x)

e More generally, for any n € N, f(nz) =nf(x).

o fl@)+ f(—x) = flz+(—2) = f(0) =0 = f(-z) = —f(z)

o f(2) = [z + 32) = f(52) + f(32) = 2f(32) = f(52) = 3/ (2)
wt) = f(@).

e We have f(rz)= = f(x) for every rational number

e More generally, for any m € N, f(



A functional equation f(x +vy) = f(z) + f(y)

Definition
A function f:R — R is called a Q-linear map if
fla+y)=f@)+ fy) (so flgz) = qf(x) for all ¢ € Q).

Q. Why is it called a linear map?

Example 1: A function f(x) = cx for some constant c¢ has the property.

flz+y)=clz+y)=cx+cy=f(z)+ fy)

A. The graph is linear!



A functional equation f(x +vy) = f(z) + f(y)

But there are more examples!
If we know f(1), we know f(3513) because f(3313) = 2015 f(1).
Q. If f(1) =5, what is f(3)? What is f(2)?

Q. What is f(\/i)?



A functional equation f(z + y) = f(z) + f(vy)

But there are more examples!

If we know f(1), we know f(3513) because f(3313) = 2015 f(1).

Q. If f(1) =5, what is f(3)? What is f(2)?

Q. What is f(v/2)?

There is no problem even if we define f(1/2) = 100.

R =1, f3vD =2

Q. Is it possible to have a Q-linear map f with f(1) =1, f(v/2) = 3?
Q. Is there a Q-linear map f with f(1) =2, f(v/5) =, f(%) =07

Summary: If we define f(a), then for any ¢ € Q, f(ga) is determined.
Except it, we can freely choose f(b) for b # qa with ¢ € Q.
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Dehn’s theorem



Dehn invariant

Let f: R — R be a function with following two properties:

o (fis Q-linear) f(x+y) = f(x)+ f(y)
o f(m)=0.

For a polyhedron P with edges ej, es, -+, €,, we define

o /(e;) as the length of the edge e;,

e 0(e;) as the dihedral angle between the faces meeting at e;.
Definition

Let P be a polyhedron with edges e;, e3, -+, e,. The Dehn invariant
D¢ (P) with respect to f is defined by



Example - a rectangular box

Let C be a rectangular box.

There are 12 edges e1,e2,--- , €12.
Then O(e;) = 0(ex) = --- = O(e1n) = T
Therefore

12 12
Di(C) = Y UefBle) =Y e f(5)
i=1 1=1

ot %f(w) = te-0=0.

Note that this is true for any Q-linear map f with f(7) =0.



Dehn’s theorem

Theorem (Dehn, 1900)

If a polyhedron P is cut into n polyhedra Py, Py, ---, P,, then
Dy(P) = Dys(P1) + Dp(P2) + -+ + Dy(Py).

Corollary
For two scissors-congruent polyhedra P and @), D;(P) = D;(Q).
Corollary

If P is a polyhedron which is scissors-congruent to a rectangular box,
then D¢(P) =0 for every Q-linear map f with f(m) = 0.

So if there is a polyhedron with Df(P) # 0, then P is not

scissors-congruent to a rectangular box!



Dehn’s theorem - proof

If we cut a polyhedron P into many polyhedra, there are four possible

changes on the set of edges.

© Nothing happens.
@ An edge is cut into two edges.
© A new edge forms on a face of P.

@ A new edge forms on the interior of P.



Dehn’s theorem - proof

Case 2: An edge is cut into two edges.

Look at e, €', and e”. e

Note that 0(e) = 6(e') = 6(e").

t(e)f(6(e))

(e’ f(0(e") + (") f(6(e"))

(") + L") f(0(e)) = L(e') f(0(e)) + (") f(B(e))



Dehn’s theorem - proof

Case 3: A new edge forms on a face of P.

See b on the picture.
There are two polyhedra P, and P; share the edge b.

Let O2(b) (resp. 05(b)) be the dihedral angle of P, (resp. P3) at b.
€(b)f(02(b)) + £(b) f(05(b)) = £(b)(f(02(b)) + f(05(b)))

(0)(f (62(b) + 05(b))) = £(b) f () = O

~



Dehn’s theorem - proof

Case 4: A new edge forms on the interior of P.

See a on the picture. e

The sum of all dihedral angles at a is 27. Therefore f(27) =0 and by

a similar idea, the sum of ¢(a)f(6(a))'s is zero.



Dehn’s theorem - proof

When we compute D¢(Py) + Dy(P) + -+ D¢(Py), ...

e We don't need to compute £(e)f(0(e)) for newly formed edges

(cases 3 and 4), because the sum of 4(e)f(A(e)) for such e is zero.

e For a decomposed edge e into e; and ey, then

£(e1)f(O(er)) + Llez) f(O(e2)) = £(e) f(O(e)).

As a conclusion, D¢(P1) + Dg(P) +---+ D¢(P,) is equal to the sum
of £(e)f(f(e)) for original edges, which is D(P).



A calculation of Dehn’s invariant

So it is sufficient to find a polyhedron P with D;(P) # 0!

Let P be a regular tetrahedron.

There are 6 edges with length ¢, dihedral angle a.

Then cosa = %



A calculation of Dehn’s invariant

Claim: « is not a rational multiple of .

Sketch of proof:

e Show that cos(k + 1)ae = 2 cos ka cos o — cos(k — 1)av.
e Use induction to show coska = % where Ay € Z and 31 Ag.
o If = §7r, then cos qa = cospm = +1.

e But cosqa = %, so Ay = %39, which is a multiple of 3.

Contradiction.



A calculation of Dehn’s invariant

« is not a rational multiple of .
So we may find a Q-linear map f: R — R such that f(7) =0 and
fla)=1.
Then
Zéf 6(¢-1) =60 0.

Therefore a regular tetrahedron is not scissors-congruent to a
rectangular box. In other words, it is impossible to compute the volume

without using integral!

By a similar idea, we are able to show that a pyramid ) over a square
base whose width and height ¢ has D;(Q) # 0.
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...and more



Dehn-Sydler theorem

Question
When are two polyhedra P and Q) scissors-congruent?
Obvious restrictions:
e vol(P) = vol(Q).
e Dy(P) = Ds(Q).
That's alll

Theorem (Sydler, 1965)

If vol(P) = vol(Q) and Dy(P) = Ds(Q) for every f, then P and Q

are scissors—congruen t.



A trend of geometry in 20th century - Algebraization

Question

For two geometric objects X and Y, how can we prove X #Y 7?7

Answer using algebra:

Step 1. For each object X, construct an algebraic object F'(X) with
the property that X =Y = F(X) = F(Y).

Step 2. Compute F(X) and F(Y).
Step 3. If F(X)# F(Y), X #Y!

Because algebraic objects are relatively easy to study, in many cases,
Step 2 is doable.



A trend of geometry in 20th century - Algebraization

In 20th century geometry, there are tons of such examples!

symmetry group, fundamental group, homotopy group, homology
group, cohomology ring, holonomy group, Chern classes, derived
category, K-group, motive, Alexander polynomial, Jones polynomial,

Fukaya category, Gromov-Witten invariants, quantum cohomology, - - -



Thank you!
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