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Part I

Introduction - volume and area



Volume of a cone

The volume formula of a cone is

1

3
Ah

where A is the area of the base and h is the height of the cone.



Volume of a cone

If we denote the distance from the apex by x, then the area of the

cross section is A
(
x
h

)2
. By the cross-section method,

volume =

∫ h
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Question

Is there any simpler method to prove the formula than integral?



Area of a triangle

For a triangle, the area formula is 1
2ab, where a is the length of the

base, b is the height.

To show this formula, nobody uses integral!

area of the triangle = area of the rectangle = 1
2ab.



Properties of the area

Here are several simple properties of the area:

• The area is a nonnegative real number.

• The area of a point or a line segment is zero.

• The area of a rectangle with width a and height b is ab.

• If we cut a polygon A into n pieces A1, A2, · · · , An, then

area(A) = area(A1) + area(A2) + · · ·+ area(An).



Scissors-congruence

Definition

Two polygons P and Q are called scissors-congruent if P can be

decomposed into finitely many polygonal pieces P1, P2, · · · , Pn which

can be reassembled to make Q.

Two scissors-congruent polygons have the same area.



Scissors-congruence

Example: Tangram



Scissors-congruence



Area of polygons

• Any polygon can be decomposed into triangles.

• A triangle is scissors-congruent to a rectangle, so we can compute

its area.

• The area of the polygon is the sum of areas of triangles.

We can evaluate the area of every polygon without using calculus!



Properties of volume

• The volume is a nonnegative real number.

• The volume of a point, a line segment, or a polygon is zero.

• The area of a rectangular box with length a, width b, and height c

is abc.

• If we cut a polyhedron P into n pieces P1, P2, · · · , Pn, then

vol(P ) = vol(P1) + vol(P2) + · · ·+ vol(Pn).

• We can define the scissors-congruence for polyhedra.

• Two scissors-congruent polyhedra have the same volume.



Hilbert’s question

In 1900 ICM, Hilbert asked 23 important mathematical questions

(including Riemann’s hypothesis, continuum hypothesis, sphere packing

problem). One of them is:

Question (Hilbert, 1900)

Are any two polyhedra P and Q with same volume scissors-congruent?



Hilbert’s question

Question (Hilbert, 1900)

Are any two polyhedra P and Q with same volume scissors-congruent?

This question is important because if it is true, then we don’t need to

take integral to evaluate the volume of a polyhedron!



Dehn’s answer

Theorem (Dehn, 1900)

There are two polyhedra P and Q with same volume, which are not

scissors-congruent.

In particular, there are some polyhedra which are not scissors-congruent

to a rectangular box. Therefore, we have to use integral to evaluate the

volume of some polyhedra.



Dehn’s answer

Theorem (Dehn, 1900)

There are two polyhedra P and Q with same volume, which are not

scissors-congruent.

Wait, but. . . how can we prove the non-congruence (in other words,

impossibility of common decomposition) of two polyhedra?



Part II

Linear maps



A functional equation

Consider a function f : R→ R satisfying following functional equation:

f(x+ y) = f(x) + f(y).

Then f has several interesting properties.

• f(0) = f(0 + 0) = f(0) + f(0) ⇒ f(0) = 0

• f(2x) = f(x+ x) = f(x) + f(x) = 2f(x) ⇒ f(2x) = 2f(x)

• More generally, for any n ∈ N, f(nx) = nf(x).

• f(x) + f(−x) = f(x+ (−x)) = f(0) = 0 ⇒ f(−x) = −f(x)

• f(x) = f( 12x+
1
2x) = f( 12x) + f( 12x) = 2f( 12x) ⇒ f( 12x) =

1
2f(x)

• More generally, for any m ∈ N, f( 1
mx) =

1
mf(x).

• We have f( nmx) =
n
mf(x) for every rational number n

m .



A functional equation f(x+ y) = f(x) + f(y)

Definition

A function f : R→ R is called a Q-linear map if

f(x+ y) = f(x) + f(y) (so f(qx) = qf(x) for all q ∈ Q).

Q. Why is it called a linear map?

Example 1: A function f(x) = cx for some constant c has the property.

f(x+ y) = c(x+ y) = cx+ cy = f(x) + f(y)

A. The graph is linear!



A functional equation f(x+ y) = f(x) + f(y)

But there are more examples!

If we know f(1), we know f( 20142013 ) because f( 20142013 ) =
2014
2013f(1).

Q. If f(1) = 5, what is f(3)? What is f( 23 )?

Q. What is f(
√
2)?

There is no problem even if we define f(
√
2) = 100.

f( 23 ) =
10
3 , f( 37

√
2) = 300

7

Q. Is it possible to have a Q-linear map f with f(1) = 1, f(
√
2) = 3?

Q. Is there a Q-linear map f with f(1) = 2, f(
√
5) = π, f(

√
5
6 ) = 0?

Summary: If we define f(a), then for any q ∈ Q, f(qa) is determined.

Except it, we can freely choose f(b) for b 6= qa with q ∈ Q.
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Part III

Dehn’s theorem



Dehn invariant

Let f : R→ R be a function with following two properties:

• (f is Q-linear) f(x+ y) = f(x) + f(y);

• f(π) = 0.

For a polyhedron P with edges e1, e2, · · · , en, we define

• `(ei) as the length of the edge ei,

• θ(ei) as the dihedral angle between the faces meeting at ei.

Definition

Let P be a polyhedron with edges e1, e2, · · · , en. The Dehn invariant

Df (P ) with respect to f is defined by

Df (P ) =

n∑
i=1

`(ei)f(θ(ei)).



Example - a rectangular box

Let C be a rectangular box.

There are 12 edges e1, e2, · · · , e12.

Then θ(e1) = θ(e2) = · · · = θ(e12) =
π
2 .

Therefore

Df (C) =

12∑
i=1

`(ei)f(θ(ei)) =

12∑
i=1

`(ei) · f(
π

2
)

=

12∑
i=1

`(ei) ·
1

2
f(π) =

12∑
i=1

`(ei) · 0 = 0.

Note that this is true for any Q-linear map f with f(π) = 0.



Dehn’s theorem

Theorem (Dehn, 1900)

If a polyhedron P is cut into n polyhedra P1, P2, · · · , Pn, then
Df (P ) = Df (P1) +Df (P2) + · · ·+Df (Pn).

Corollary

For two scissors-congruent polyhedra P and Q, Df (P ) = Df (Q).

Corollary

If P is a polyhedron which is scissors-congruent to a rectangular box,

then Df (P ) = 0 for every Q-linear map f with f(π) = 0.

So if there is a polyhedron with Df (P ) 6= 0, then P is not

scissors-congruent to a rectangular box!



Dehn’s theorem - proof

If we cut a polyhedron P into many polyhedra, there are four possible

changes on the set of edges.

1 Nothing happens.

2 An edge is cut into two edges.

3 A new edge forms on a face of P .

4 A new edge forms on the interior of P .



Dehn’s theorem - proof

Case 2: An edge is cut into two edges.

P1

P2

P3

e

e’ e’’

a

b

Look at e, e′, and e′′.

Note that θ(e) = θ(e′) = θ(e′′).

`(e)f(θ(e)) = (`(e′) + `(e′′))f(θ(e)) = `(e′)f(θ(e)) + `(e′′)f(θ(e))

= `(e′)f(θ(e′)) + `(e′′)f(θ(e′′))



Dehn’s theorem - proof

Case 3: A new edge forms on a face of P .

P1

P2

P3

e

e’ e’’

a

b

See b on the picture.

There are two polyhedra P2 and P3 share the edge b.

Let θ2(b) (resp. θ3(b)) be the dihedral angle of P2 (resp. P3) at b.

`(b)f(θ2(b)) + `(b)f(θ3(b)) = `(b)(f(θ2(b)) + f(θ3(b)))

= `(b)(f(θ2(b) + θ3(b))) = `(b)f(π) = 0



Dehn’s theorem - proof

Case 4: A new edge forms on the interior of P .

P1

P2

P3

e

e’ e’’

a

b

See a on the picture.

The sum of all dihedral angles at a is 2π. Therefore f(2π) = 0 and by

a similar idea, the sum of `(a)f(θ(a))’s is zero.



Dehn’s theorem - proof

When we compute Df (P1) +Df (P2) + · · ·+Df (Pn), . . .

• We don’t need to compute `(e)f(θ(e)) for newly formed edges

(cases 3 and 4), because the sum of `(e)f(θ(e)) for such e is zero.

• For a decomposed edge e into e1 and e2, then

`(e1)f(θ(e1)) + `(e2)f(θ(e2)) = `(e)f(θ(e)).

As a conclusion, Df (P1) +Df (P2) + · · ·+Df (Pn) is equal to the sum

of `(e)f(θ(e)) for original edges, which is Df (P ).



A calculation of Dehn’s invariant

So it is sufficient to find a polyhedron P with Df (P ) 6= 0!

Let P be a regular tetrahedron.

There are 6 edges with length `, dihedral angle α.

Then cosα = 1
3 .



A calculation of Dehn’s invariant

Claim: α is not a rational multiple of π.

Sketch of proof:

• Show that cos(k + 1)α = 2 cos kα cosα− cos(k − 1)α.

• Use induction to show cos kα = Ak

3k
where Ak ∈ Z and 3 - Ak.

• If α = p
qπ, then cos qα = cos pπ = ±1.

• But cos qα =
Aq

3q , so Aq = ±3q, which is a multiple of 3.

Contradiction.



A calculation of Dehn’s invariant

α is not a rational multiple of π.

So we may find a Q-linear map f : R→ R such that f(π) = 0 and

f(α) = 1.

Then

Df (P ) =

6∑
i=1

`f(α) = 6(` · 1) = 6` 6= 0.

Therefore a regular tetrahedron is not scissors-congruent to a

rectangular box. In other words, it is impossible to compute the volume

without using integral!

By a similar idea, we are able to show that a pyramid Q over a square

base whose width and height ` has Df (Q) 6= 0.



Part IV

. . . and more



Dehn-Sydler theorem

Question

When are two polyhedra P and Q scissors-congruent?

Obvious restrictions:

• vol(P ) = vol(Q).

• Df (P ) = Df (Q).

That’s all!

Theorem (Sydler, 1965)

If vol(P ) = vol(Q) and Df (P ) = Df (Q) for every f , then P and Q

are scissors-congruent.



A trend of geometry in 20th century - Algebraization

Question

For two geometric objects X and Y , how can we prove X 6= Y ?

Answer using algebra:

Step 1. For each object X, construct an algebraic object F (X) with

the property that X = Y ⇒ F (X) = F (Y ).

Step 2. Compute F (X) and F (Y ).

Step 3. If F (X) 6= F (Y ), X 6= Y !

Because algebraic objects are relatively easy to study, in many cases,

Step 2 is doable.



A trend of geometry in 20th century - Algebraization

In 20th century geometry, there are tons of such examples!

symmetry group, fundamental group, homotopy group, homology

group, cohomology ring, holonomy group, Chern classes, derived

category, K-group, motive, Alexander polynomial, Jones polynomial,

Fukaya category, Gromov-Witten invariants, quantum cohomology, · · ·



Thank you!
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