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ABSTRACT. We study the probability distribution of the number of zeros of multivariable
polynomials with bounded degree over a finite field. We find the probability generating
function for each set of bounded degree polynomials. In particular, in the single variable
case, we show that as the degree of the polynomials and the order of the field simultane-
ously approach infinity, the distribution converges to a Poisson distribution.

1. INTRODUCTION

For some prime number p, take a random polynomial f ∈ Z/pZ[x] with positive degree
d. What is the average number of distinct zeros of f in Z/pZ? While it is clearly some-
where between 0 and p, the exact answer is not quite obvious. Interestingly, the average
is always one, regardless of the degree d and the prime p. The authors believe this fact is
well known in the algebraic combinatorics community.

In this paper, extending the above result, we investigate the distribution of the number
of distinct zeros of a random polynomial over any finite field. Let Fq be the finite field of
order q = pr, where p is a prime number. Fix a nonnegative integer d, and consider the set
Fq[x1, . . . , xn](d,...,d) of polynomials with n variables, Fq-coefficients, and degree at most d
with respect to each variable. This is a (d+ 1)n-dimensional Fq-vector space. By selecting
coefficients uniformly, we choose a random polynomial f ∈ Fq[x1, . . . , xn](d,...,d). Let Xn,d :

Fq[x1, . . . , xn](d,...,d) → N be the random variable of the number of distinct zeros of f . The
main result of this paper is the computation of its probability generating function.

Theorem 1.1. Let Xn,d : Fq[x1, . . . , xn](d,...,d) → N be the random variable whose value is the
number of distinct zeros of a random polynomial over Fq. If d ≥ q − 1, then the probability
generating function of Xn,d is given by

Φn,d(t) :=
∑
k≥0

P (Xn,d = k)tk =

(
1 +

t− 1

q

)qn

.

Corollary 1.2. Under the same assumption, the expected value E and the variance V of Xn,d are

E(Xn,d) = qn−1, V (Xn,d) = qn−1

(
1− 1

q

)
.
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We obtain the following result when n = 1 by taking the limit q → ∞.

Corollary 1.3. If q → ∞, the probability distribution of X1,d converges to the Poisson distribution
with parameter 1.

In Section 2, we compute the average number of zeros using the incidence variety
method. Though the computation is not later used to calculate Φn,d(t), the authors in-
cluded the proof because it 1) explains the anticipated expected value without complex
calculation, and 2) is flexible, as it works for many variations of the sample space, and
only requires a nonnegative degree d. See Remark 2.4. Section 3 is devoted to computing
Φ1,d(t). Our method is based on a similar computation by Leontév [Leo06], who studied
the case of single-variable monic polynomials of a fixed degree. Our result (Theorem 3.3)
for Φ1,d(t) is a careful application of his result.

Our main contribution is in Section 4. By employing elementary algebraic tools such as
Lagrange interpolation and the Chinese remainder theorem, we show that Φn,d(t) is stable
when d ≥ q − 1, then calculate it explicitly in Theorem 4.5. Finally, in the last section, we
discuss some related questions.

For real polynomials, there have been numerous results on an analogous problem. If
the coefficients are independent and normally distributed, a classical result of Kac asserts
that the average converges to 2

π
log d [Kac43]. See [EK95] for a nice survey, its connection

with geometry, and references. For more recent results, see, for example, [DPSZ02, NV21].

For a similar question over p-adic fields, there have also been several results, including
[Eva06, BCFG22]. Since the ring of p-adic integers can be obtained by taking the inverse
limit of Z/pkZ, linking these results with the case of Z/pkZ-coefficients will be interesting.
See Question 5.9.

Acknowledgement. P.W. was supported by the Fordham Summer Research Assistant
Fellowship.

2. THE AVERAGE NUMBER OF ZEROS

In this section, we fix the notation. Then, using the incidence variety, we show that the
average number of zeros of a random polynomial with nonnegative degree is qn−1.

Let Fq be the finite field of order q = pr, where p is a prime number. The ring of
polynomials with n variables and Fq-coefficients is denoted by Fq[x1, . . . , xn].

Definition 2.1. Fix an integer d ≥ 0. The subset of Fq[x1, . . . , xn] of polynomials whose
degree is at most d with respect to xi for each 1 ≤ i ≤ n is denoted by Fq[x1, . . . , xn](d,...,d).
The subset of polynomials whose total degree is at most d is denoted by Fq[x1, . . . , xn]d.

Clearly, Fq[x1, . . . , xn]d ⊂ Fq[x1, . . . , xn](d,...,d). If n = 1, Fq[x1]d = Fq[x1](d).
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Since Fq[x1, . . . , xn](d,...,d) and Fq[x1, . . . , xn]d are finite-dimensional Fq-vector spaces, we
can choose a random polynomial by fixing a basis and uniformly selecting coefficients.

Definition 2.2. A point p := (a1, . . . , an) ∈ Fn
q is a zero of a polynomial f ∈ Fq[x1, . . . , xn]

if f(p) = 0.

Thus, we only consider zeros lying in Fn
q .

Theorem 2.3. Fix d ≥ 0. The average number of zeros of a random polynomial in Fq[x1, . . . , xn](d,...,d)
is qn−1.

Proof. Consider the incidence variety

Inc := {(p, f) | f(p) = 0} ⊂ Fn
q × Fq[x1, . . . , xn](d,...,d).

Then, there are two projection maps

Inc
π1

~~

π2

''

Fn
q Fq[x1, . . . , xn](d,...,d),

where π1(p, f) := p and π2(p, f) := f . For each f ∈ Fq[x1, . . . , xn](d,...,d), |π−1
2 (f)| is the

number of zeros of f . Thus, the desired average is given by

|Inc|
|Fq[x1, . . . , xn](d,...,d)|

.

First of all, the dimension of Fq[x1, . . . , xn](d,...,d) is (d+ 1)n. On the other hand, for |Inc|,
observe that, for any p ∈ Fn

q , we may define the evaluation map evp : Fq[x1, . . . , xn](d,...,d) →
Fq by setting evp(f) := f(p). Then, for each p ∈ Fn

q , π−1
1 (p) is in bijection with ker evp.

Since evp is clearly surjective, by the dimension theorem,

|π−1
1 (p)| = | ker evp| = q(d+1)n−1.

Since every fiber of π1 has the same cardinality, for any p ∈ Fn
q , |Inc| = |Fn

q ||π−1
1 (p)| =

q(d+1)n+n−1.

In sum, we have
|Inc|

|Fq[x1, . . . , xn](d,...,d)|
=

q(d+1)n+n−1

q(d+1)n
= qn−1.

□

Remark 2.4. (1) By similar logic, it is straightforward to show that the average num-
ber of zeros of a random polynomial in Fq[x1, . . . , xn]d is also qn−1.

(2) Unlike Theorem 1.1, the result does not necessarily require d ≥ q − 1 .
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Since the average in Theorem 2.3 does not depend on the degree d, we can make the
following conclusion by taking the limit d → ∞.

Corollary 2.5. The average number of distinct zeros of a randomly chosen polynomial in Fq[x1, . . . , xn]

is qn−1. In particular, on average, a random polynomial in Fq[x] has precisely one zero.

3. SINGLE VARIABLE CASE

Here, we compute the probability generating function for the n = 1 variable case.

Definition 3.1. Let Xn,d : Fd[x1, . . . , xn](d,...,d) → N be the random variable of the number
of distinct zeros in Fq of a uniformly chosen f ∈ Fd[x1, . . . , xn](d,...,d).

The distribution of the number of zeros of a random polynomial was studied by Leontév
under a slightly different setup [Leo06] for n = 1. We deduce our generating function

(1) Φ1,d(t) :=
∑
k≥0

P (X1,d = k)tk

from his combinatorial computation. We emphasize that the d ≥ q − 1 assumption is
unnecessary for the proof we provide here for n = 1 variables.

Let Bd,q,k be the number of degree d monic polynomials in Fq[x] with k distinct zeros.
Using the inclusion-exclusion principle and residue calculation, Leontév showed that the
set of Bd,q,k satisfies the following generating function [Leo06, Lemma 4]:

(2)
∑
k≥0

Bd,q,k

qk
tk =

d∑
i=0

(
q
i

)
qi

(t− 1)i.

From this result, we compute the probability generating function over Fq[x]d. We use
the convention that the zero polynomial has degree −∞.

Lemma 3.2. Let Cd,q,k be the number of polynomials in Fq[x]d with k distinct zeros. Then

Cd,q,k =

{
(q − 1)

∑d
e=0 Be,q,k, k ̸= q,

(q − 1)
∑d

e=0 Be,q,q + 1, k = q.

Proof. Recall that Fq[x]d is the vector space of all polynomials of degree at most d. As
nonzero scalar multiplication does not change the number of zeros of a given polynomial,
to count the number of all polynomials with degree at most d, we obtain the first formula.
When k = q, we add one to account for the zero polynomial. □

Theorem 3.3. The probability generating function Φ1,d(t) in (1) satisfies

(3) Φ1,d(t) =
d∑

i=0

(qd+1−i − 1)
(
q
i

)
qd+1

(t− 1)i +
tq

qd+1
.
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Proof. Note that

Φ1,d(t) =
∑
k≥0

P (X1,d = k)tk =
∑
k≥0

Cd,q,k

qd+1
tk.

By Lemma 3.2,

Φ1,d(t) =
∑
k≥0

(q − 1)
d∑

e=0

Be,q,k

qd+1
tk +

tq

qd+1

=
q − 1

q

∑
k≥0

d∑
e=0

Be,q,k

qd
tk +

tq

qd+1
=

q − 1

q

d∑
e=0

∑
k≥0

Be,q,k

qd−eqe
tk +

tq

qd+1

=
q − 1

q

d∑
e=0

1

qd−e

(∑
k≥0

Be,q,k

qe
tk

)
+

tq

qd+1
=

q − 1

qd+1

d∑
e=0

qe

(∑
k≥0

Be,q,k

qe
tk

)
+

tq

qd+1
.

(4)

Using (2), we have

Φ1,d(t) =
q − 1

qd+1

d∑
e=0

qe

(
e∑

i=0

(
q
i

)
qi

(t− 1)i

)
+

tq

qd+1
=

q − 1

qd+1

d∑
e=0

e∑
i=0

(
q
i

)
qi

(t− 1)iqe +
tq

qd+1

=
q − 1

qd+1

d∑
i=0

(
d∑

e=i

qe

) (
q
i

)
qi

(t− 1)i +
tq

qd+1
=

q − 1

qd+1

d∑
i=0

qi(qd+1−i − 1)

q − 1

(
q
i

)
qi

(t− 1)i +
tq

qd+1

=
d∑

i=0

(qd+1−i − 1)
(
q
i

)
qd+1

(t− 1)i +
tq

qd+1
.

□

From the generating function, we immediately obtain the mean and the variance of the
number of zeros.

Corollary 3.4. Let E and V respectively denote the mean and variance of X1,d. Then

(5) E(X1,d) = 1, V (X1,d) = 1− 1

q
.

Proof. Since E(X1,d) =
∑

k≥0 kP (X1,d = k) = Φ′
1,d(1), and

V (X1,d) = E(X2
1,d)− E(X1,d)

2 =
∑
k≥0

k2P (X1,d = k)−

(∑
k≥0

kP (X1,d = k)

)2

= Φ′′
1,d(1) + Φ′

1,d(1)− (Φ′
1,d(1))

2,

the result immediately follows from Theorem 3.3 by computing the first and second
derivatives of Φ1,d(t) at the point t = 1. □
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When d is large relative to q, the generating function Φ1,d(t) reduces to a surprisingly
simple formula.

Corollary 3.5. If d ≥ q − 1, the formula in (3) simplifies to

Φ1,d(t) =

(
1 +

t− 1

q

)q

.

Proof. When d ≥ q, since P (X1,d = k) = 0 for k > q, we have

Φ1,d(t) =

q∑
i=0

(qd+1−i − 1)
(
q
i

)
qd+1

(t− 1)i +
tq

qd+1
.

Using the binomial theorem, we obtain

Φ1,d(t) =

q∑
i=0

(
q

i

)(
t− 1

q

)i

−
q∑

i=0

(
q
i

)
qd+1

(t− 1)i +
tq

qd+1

=

(
1 +

t− 1

q

)q

− (1 + (t− 1))q

qd+1
+

tq

qd+1
=

(
1 +

t− 1

q

)q

.

Now, a routine calculation shows that Φ1,q−1(t) = Φ1,q(t), yielding the desired result. □

Corollary 3.5 implies the following interesting consequence, generalizing what Leontév
observed for monic polynomials of degree d = q − 1.

Corollary 3.6. For d ≥ q − 1, as q → ∞, the probability distribution of the number of zeros of a
random polynomial in Fq[x]d converges to a Poisson distribution with parameter 1.

Proof. The result follows immediately from

lim
q→∞

Φ1,d(t) = lim
q→∞

(
1 +

t− 1

q

)q

= et−1.

□

One may wonder why the probability distribution does not change if d ≥ q − 1. In the
next section, we explain why this is the case in a more general context.

4. MULTIVARIABLE CASE

Next, we extend the computation in Section 3 to the general case. We additionally
assume that d ≥ q − 1.

Recall that the multiplicative group F∗
q of nonzero elements in Fq is cyclic [Hun80, The-

orem V.5.3]. Thus, for every a ∈ Fq, we have aq = a. This implies that every polynomial
f ∈ Fq[x1, . . . , xn] in the ideal

(6) I := (xq
1 − x1, . . . , x

q
n − xn)
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satisfies f(p) = 0 for all p ∈ Fn
q .

The following observation is essentially the Lagrange interpolation. For all a ∈ Fq, let

(7) La(x) :=
∏
b̸=a

(x− b)

(a− b)
.

Note that La(x) has degree q − 1, La(a) = 1, and La(b) = 0 for all b ∈ Fq \ {a}.

Lemma 4.1. Every f ∈ Fq[x1, . . . , xn] can be written as

(8) f =
∑
a∈Fq

La(xn)f(x1, . . . , xn−1, a) +
n∑

i=1

(xq
i − xi)hi

for some h1, . . . , hn ∈ Fq[x1, . . . , xn], where hi is not a multiple of (xq
j − xj) for j < i.

Proof. It is straightforward to check that, for every p = (p1, . . . , pn) ∈ Fn
q ,

f(p) =
∑
a∈Fq

La(pn)f(p1, . . . , pn−1, a).

Thus, f −
∑

a∈Fq
La(xn)f(x1, . . . , xn−1, a) ∈ I in (6), implying it is an Fq[x1, . . . , xn]-linear

combination of {xp
i − xi}. That is, we can find h1, . . . , hn. Finally, we may impose the last

condition by rearranging the coefficients if hi divides xq
j − xj for some j < i. □

Lemma 4.2. For any q polynomials {ga}a∈Fq ⊂ Fq[x1, . . . , xn−1](q−1,...,q−1), there exists a unique
f ∈ Fq[x1, . . . , xn](q−1,...,q−1) such that f(x1, . . . , xn−1, a) = ga(x1, . . . , xn−1) for all a ∈ Fq.

Proof. For each a ∈ Fq, consider the system of congruences

(9) f ≡ ga mod (xn − a).

Since the principal ideals (xn − a) are pairwisely relatively prime, we may apply the
Chinese remainder theorem [Hun80, Theorem III.2.25]. By the theorem, there exists a
unique f ∈ Fq[x1, . . . , xn] modulo the ideal

⋂
a∈Fq

(xn − a) =

∏
a∈Fq

(xn − a)

 = (xq
n − xn)

satisfying the congruence relations in (9). Indeed, using formula (8) in Lemma 4.1, we can
construct such an f ∈ Fq[x1, . . . , xn](q−1,...,q−1) explicitly. □

Proposition 4.3. Suppose that d ≥ q − 1. Then, the probability distribution of the number of
zeros of a random polynomial in Fq[x1, . . . , xn](d,...,d) is independent of d.

Proof. Combining Lemma 4.1 and Lemma 4.2, a polynomial f ∈ Fq[x1, . . . , xn](d,...,d) can
be uniquely chosen by selecting the polynomials {ga}a∈Fq ⊂ Fq[x1, . . . , xn](q−1,...,q−1) and
h1, . . . , hn ∈ Fq[x1, . . . , xn] with certain divisibility and degree conditions. Note that the
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choice of h1, . . . , hn does not affect the number of zeros of f because they are multiplied
with xq

i −xi. Therefore, while computing the distribution of the number of zeros, we may
assume that the sample space is Fq[x1, . . . , xn](q−1,...,q−1). □

Remark 4.4. (1) Equivalently, we may assume that the sample space is

(Fq[x1, . . . , xn−1](q−1,...,q−1))
q.

This has an important consequence – the independence of the choice of {ga}a∈Fq .
(2) Proposition 4.3 explains why the probability generating function in Corollary 3.5

stabilizes.

For the proof, we henceforth assume that d = q − 1. For d ≥ q, we may obtain the same
result by applying Proposition 4.3.

Theorem 4.5. The probability generating function

Φn,d(t) =
∑
k≥0

P (Xn,d = k)tk

of the number of zeros of a random polynomial f ∈ Fq[x1, . . . , xn](d,...,d) is given by

Φn,d(t) = (Φ1,d(t))
qn−1

=

(
1 +

t− 1

q

)qn

.

Proof. We proceed by induction on n. The n = 1 case holds by Corollary 3.5.

For a random polynomial f ∈ Fq[x1, . . . , xn](d,...,d), let N(f) denote the number of zeros
of f . Then, observe that choosing f is equivalent to choosing q random polynomials
{ga}a∈Fq ⊂ Fq[x1, . . . , xn−1](d,...,d), where each ga = f(x1, . . . , xn−1, a). By (8) (with hi = 0),
N(f) =

∑
a∈Fq

N(ga). Then, we have

(10) P (N(f) = k) =
∑

∑
a∈Fq ka=k

P (N(ga) = ka, ∀a ∈ Fq).

Since the choice of {ga}a∈Fq are independent, the right-hand side of (10) equals

∑
∑

a∈Fq ka=k

∏
a∈Fq

P (N(ga) = ka)

 .

We define a multivariable generating function

(11) Φ(ta, a ∈ Fq) :=
∑

∑
a∈Fq ka=k

∏
a∈Fq

P (N(ga) = ka)t
ka
a

 .
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The right-hand side of (11) is given by the Cauchy product of the coefficients of polyno-
mials. Therefore,

(12) Φ(ta, a ∈ Fq) =
∏
a∈Fq

(∑
ka≥0

P (N(ga) = ka)t
ka
a

)
=
∏
a∈Fq

Φn−1,d(ta) =
∏
a∈Fq

(Φ1,d(ta))
qn−2

by the inductive hypothesis.

On the other hand, setting ta = t for all a ∈ Fq, we have

Φ(t, . . . , t) =
∑

{ka}a∈Fq

∏
a∈Fq

P (N(ga) = ka)t
∑

ka

=
∑
k≥0

∑
∑

a∈Fq ka=k

∏
a∈Fq

P (N(ga) = ka)

 tk =
∑
k≥0

P (N(f) = k)tk = Φn,d(t).

(13)

Then, combining (12) and (13),

Φn,d(t) = Φ(t, . . . , t) =
(
Φ1,d(t))

qn−2
)q

= (Φ1,d(t))
qn−1

=

(
1 +

t− 1

q

)qn

.

□

As in the single variable case, we may compute the mean and variance from the gener-
ating function Φn,d(t). We leave the details of the computation to the interested readers.

Corollary 4.6. The mean E and variance V of Xn,d are given by

E(Xn,d) = qn−1, V (Xn,d) = qn−1

(
1− 1

q

)
.

5. QUESTIONS

We leave a few related questions, supported by numerical computations.

In the multivariable case, as shown in Section 4, the sample space Fq[x1, . . . , xn](d,...,d)
enables us to use induction on the number of variables. Perhaps another natural choice
of a finite sample space is Fq[x1, . . . , xn]d, the set of polynomials whose total degree is at
most d. However, a similar argument does not work in this case, as the numbers of zeros
for the restrictions f(x1, . . . , xn−1, a) and f(x1, . . . , xn−1, a

′) are not independent.

Question 5.1. What is the probability generating function of the number of distinct zeros
of a random polynomial in Fq[x1, . . . , xn]d?

From numerical investigation, it seems that the probability distribution for Fq[x1, . . . , xn]d
resembles the distribution for Fq[x1, . . . , xn](d,...,d). Note that this is not entirely obvious,
as the ratio of the dimensions of Fq[x1, . . . , xn]d and Fq[x1, . . . , xn](d,...,d) is

(
n+d−1

d

)
/(d+ 1)n,
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which approaches zero as n → ∞. On the other hand, from Remark 2.4, we know their
expected values are the same.

Another natural extension is the case of polynomials over a projective space. More pre-
cisely, let Fq[x1, . . . , xn]

h
d be the Fq-vector space consisting of homogeneous polynomials of

degree d. Let Yn,d be the random variable of the number of nontrivial zeros up to nonzero
scalar multiplication of a random polynomial f ∈ Fq[x1, . . . , xn]

h
d . By employing the inci-

dence variety method in Section 2, it is straightforward to check that the expected value
of Yn,d is

E(Yn,d) =
(qn+1 − 1)

(
q(

n+d
d )−1 − 1

)
(q − 1)

(
q(

n+d
d ) − 1

) ≈ qn−1.

Question 5.2. What is the probability generating function of Yn,d?

Another possible line of inquiry is the distribution for a random polynomial over Z/mZ,
where m may be composite. In particular, let Km

n,d be the random variable of the number
of distinct zeros of a random polynomial in Z/mZ[x1, . . . , xn](d,...,d).

Question 5.3. Suppose m = p1 . . . pr is the square-free product of r distinct primes. What
is the probability generating function of Km

n,d?

Remark 5.4. By the Chinese remainder theorem, any random f ∈ Z/mZ[x1, . . . , xn](d,...,d)
is equivalent to a random r-tuple of polynomials (fp1 , . . . , fpr), where each fpi denotes the
reduction of f in Z/piZ[x1, . . . , xn](d,...,d).

Despite this fact, computing the probability generating function of Km
n,d remains a non-

trivial task. Numerically, however, one can discern some statistical patterns.

Conjecture 5.5. If m is square-free, then the expected value E of Km
n,d is

E(Km
n,d) = mn−1.

Further, the distribution is stable for d ≥ pr − 1, where pr is the largest prime factor of m.

Another potential question is the following:

Question 5.6. If m is some prime power pk, what is the probability generating function of
Km

n,d?

Numerically, despite similarities to Question 5.3, this case presents some additional
subtleties. We record our observations for particular values of m, d and n below with a
supporting graph (Figure 1).
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Conjecture 5.7. If m is some prime power pk, then the expected value E of Km
n,d is also

E(Km
n,d) = mn−1.

In the single variable case, for d > 1, the variance V of Km
1,d is

V (Km
1,d) = k

(
1− 1

p

)
.

Further, the distribution stabilizes as d increases.

For n ≥ 1 variables, one can also observe the following interesting behavior regarding
the probability distribution of Km

n,d.

Observation 5.8. If m is some prime power pk, the probability that Km
n,d = β is nonzero only

when β is a multiple of pn−1.
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FIGURE 1. Distribution of zeros over Z/9Z[x1, x2](2,2).

One might inquire similarly about polynomials with integer coefficients. However, it
seems that obtaining an integral zero for a random polynomial in Z[x] is an exceedingly
rare event. In other words, the expected number of integral zeros of a random polynomial
in Z[x]d is zero [BSK20] (we encourage readers to consider the d = 1 case by themselves).

Finally, another interesting question arises if we consider the p-adic numbers.

Question 5.9. Let Zp be the set of p-adic integers and Wn,d be the random variable of the
number of zeros of a random polynomial in Zp[x1, . . . , xn](d,...,d). What is the probability
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distribution of Wn,d? One may ask a similar question for Qp, the field of fractions of Zp.
Can we relate this distribution to the case of Z/pkZ[x1, . . . , xn](d,...,d)?
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