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ABSTRACT. We consider two algebras of curves associated to an oriented surface of finite
type – the cluster algebra from combinatorial algebra, and the skein algebra from quan-
tum topology. We focus on generalizations of cluster algebras and generalizations of skein
algebras that include arcs whose endpoints are marked points on the boundary or in the
interior of the surface. We show that the generalizations are closely related by maps that
can be explicitly defined, and we explore the structural implications, including (non-)finite
generation. We also discuss open questions about the algebraic structure of the algebras.

1. INTRODUCTION

Let Σ be an oriented surface with a finite set of marked points, which we distinguish
as boundary marked points or interior punctures. The main goals of this paper are to
review and clarify relationships between several generalizations of the cluster algebra
and the skein algebra of Σ, and to explore the structural implications of this relationship.

The cluster algebraA(Σ) of a surface are a large class of cluster algebras that are particu-
larly well-studied (See [Wil14] for an excellent survey). Cluster algebras are commutative
algebras whose generators (cluster variables) and relations (cluster seeds) satisfy muta-
tion properties determined by certain types of combinatorial data [FZ02]. In the case of
the cluster algebra of a surface with boundary marked points, the generators correspond
to edges of an ideal triangulation, and mutation encodes the combinatorial changes seen
when a diagonal edge of the triangulation is flipped [GSV05, FG06]. The definition was
motivated by the similarity between the mutation formulas for cluster algebras and the
Ptolemy relation for lengths of edges seen in Teichmüller theory, especially as in the work
of Penner [Pen87, Pen12]. In the presence of interior marked points, one can also define
the cluster algebra, but one needs to combinatorially extend the definition of a triangula-
tion and the edge flip move [FST08, FT18].

The cluster algebra for a surface has been found to be closely related to the Kauffman
bracket skein algebra Sq(Σ) from quantum topology. The skein algebra was introduced
in [Prz91, Tur91] as a generalization of the Jones polynomial [Jon85, Kau87] and appears
prominently in the associated topological quantum field theory [BHMV95]. The skein
algebra is generated by framed loops in Σ × (−1, 1) modulo the Kauffman bracket skein
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relations, and it is non-commutative except for a few small surfaces and except when
q = ±1. The skein algebra holds a special place in quantum topology due to its connec-
tions to hyperbolic geometry and algebraic geometry. In particular, it is a deformation
quantization of the SL2(C)-character variety of the surface [Bul97, PS00, Tur91], which
contains the Teichmüller space of Σ.

Because of the common connection to Teichmüller theory, it is natural to expect that
there is some compatibility between the cluster algebraA(Σ) and the skein algebra Sq(Σ).
Actually, because the cluster algebra is generated by edges of an ideal triangulation, a
little thought shows that the compatibility should exist with versions of the skein alge-
bra that include arcs between marked points on Σ. One such generalization appeared in
work of Roger and Yang [RY14], who wanted to identify their skein algebra as a defor-
mation quantization of Penner’s decorated Teichmüller space for a punctured surface Σ

[Pen87, Pen12]. At around the same time, Muller [Mul16] defined a different skein al-
gebra, coming from a quantum cluster algebra for a surface of boundary marked points.
Since then, these definitions have been combined and extended to include decorations of
± (called states) on the boundary marked points [Lê18, BKL24]. We aim to make a precise
statement about their relationship with each other and with cluster algebras here.

We remark that similar compatibility results have been proved previously, with differ-
ent levels of generality and different methods [Mul16, MQ23, MW24]. However, clear
statements about the compatibility of the cluster algebra and skein algebra have been
missing so far. The known compatibility results have treated only special cases (such
as surfaces with only boundary marked points, or only with interior punctures) and only
with certain variations. A goal of this paper is to provide general statements that incorpo-
rate what is known so far, both by providing references and by explaining how to extend
existing proofs.

We begin with definitions of the various generalizations of the skein algebra that in-
clude arcs in Section 2. Our primary interest is in the Muller-Roger-Yang generalized skein
algebra SMRY

q (Σ) from [BKL24]. We also discuss the Lê-Roger-Yang generalized skein algebra
SLRY
q (Σ), which includes states at the boundary marked points. In Section 4, we prove a

striking common property, that the skein algebras are finitely generated. In contrast, as
we discuss in Section 6.2, the cluster algebra A(Σ) is not always finitely generated.

Theorem A. The generalized skein algebras SMRY
q (Σ) and SLRY

q (Σ) are finitely generated.

It was shown that the original skein algebra Sq(Σ) was finitely generated in [Bul99],
and the proof was extended in for specific cases [Mul16, BPKW16, MW24]. Our proof
here applies to the most general case. It immediately follows that some variations of
generalized skein algebras are also finitely generated (Corollary 4.2 and 4.5).

In Section 5, we define the cluster algebra for surfaces with both boundary marked
points and interior punctures, as well its associated upper cluster algebra U(Σ). We prove
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the compatibility of the cluster algebras and skein algebras in Section 6. To do so, we make
two modifications. First, observe that the set of boundary edges form a multiplicative
subset, and so we may define a localization SMRY

q (Σ)[∂−1]. Then we set q = 1 to obtain
a commutative skein algebra SMRY

1 (Σ)[∂−1], and we show that it contains a copy of the
cluster algebra. Secondly, we define a certain subalgebra S□

q (Σ) of SMRY
q (Σ)[∂−1] that is

generated by tagged arcs and loops; see Section 6 for the definition. We show that it is
contained inside the upper cluster algebra U(Σ).

Theorem B. Let Σ be a triangulable marked surface.

(1) There is an inclusion A(Σ) ⊂ SMRY
1 (Σ)[∂−1].

(2) There is a subalgebra S□
q (Σ) of SMRY

q (Σ)[∂−1] (that is generated by tagged arcs and loops)
so that there are inclusions

A(Σ) ⊂ S□
1 (Σ) ⊂ U(Σ).

We remark that the second part of Theorem B also appears in [MQ23, Proposition 3.7].
However, at least to the authors, the extension from an unpunctured surface case [Mul16]
to punctured surfaces needs some verification. This is because there are no tagged arcs
in SMRY

q (Σ), but there are vertex classes. We give some brief outline of the argument and
references to relevant literature in Section 6.

Due to limited scope and time, the authors decided to restrict discussion here to the
generalized skein algebras SMRY

q (Σ) and SLRY
q (Σ), and their variations. The research on

the ordinary skein algebra Sq(Σ) is both long and rich. The results for the Sq(Σ) obviously
inspired the theorems presented in this paper, as well as the open questions from Section
7. Unfortunately, a full discussion and bibliography are outside the scope of our paper.
We encourage interested readers to check the references, e.g. [LY21, PBIMW24].

Acknowledgements. We thank the organizers of the special sessions on Knots, Skein
Modules, and Categorification at the Joint Mathematical Meetings and Skein Modules
in Low Dimensional Topology at a AMS sectional meeting in 2024 for their invitation.
HK was supported by JSPS KAKENHI Grant Number JP23K12976. HW was partially
supported by DMS-2305414 from the US National Science Foundation.

2. SKEIN ALGEBRAS

Let Σ be a compact oriented surface with possibly nonempty boundary ∂Σ, and V be a
finite set of points of Σ. The pair Σ := (Σ, V ) is called a marked surface. From now on, if
there is no chance of confusion, a surface is always a marked surface. We set V∂ := V ∩∂Σ
and call it by the set of boundary marked points. The complement V◦ := V \ V∂ is called the
set of interior punctures. Depending on how to treat the arc classes meeting ∂Σ, we use
two different types of tangles.
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Definition 2.1. A one-dimensional compact submanifold α of Σ× (−1, 1) equipped with
a framing is called a V -tangle if

(1) ∂α ⊂ V × (−1, 1);
(2) Int α ⊂ (Int Σ \ V )× (−1, 1).

A ∂-tangle is a one-dimensional compact submanifold α ⊂ Σ × (−1, 1) with a framing
such that

(1) ∂α ⊂ (∂Σ \ V∂)× (−1, 1);
(2) for each boundary component e of ∂Σ \ V∂ , all points of ∂α ∩ e × (−1, 1) have

different heights;
(3) Int α ⊂ (Int Σ \ V )× (−1, 1).

If α is a manifold without boundary, both a V -tangle and a ∂-tangle are disjoint unions
of framed loops on Int Σ \ V .

Here, we define two generalized skein algebras. For each interior puncture vi ∈ V◦, we
assign a formal variable vi. We fix the Laurent polynomial ring C[v±1

i ] as the coefficient
ring. It commutes with all other elements that we will introduce from now on. We also
fix q ∈ C∗.

Definition 2.2 (Muller-Roger-Yang skein algebra ). The Muller-Roger-Yang skein algebra
SMRY
q (Σ) of a marked surface Σ = (Σ, V ) is a C[v±1

i ]-algebra generated by isotopy classes
of V -tangles in Σ× (−1, 1), modulo the following generalized skein relations:

(A) = q + q−1 ,

(B) = (−q2 − q−2) ,

(C) = (q + q−1) ,

(D) = v−1
(
q1/2 + q−1/2

)
around an interior puncture v,

(E) q−1/2 = q1/2 ,

(F) = 0 = .

The multiplication is defined as the stacking of V -tangles.
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The second generalized skein algebra is based on ∂-tangles and extra states. A state of
a ∂-tangle α is a map s : ∂α∩ ∂Σ→ {+,−}. A stated ∂-tangle is a pair (α, s). If there is no
confusion, we denote it by α.

Definition 2.3 (Lê-Roger-Yang skein algebra ). The Lê-Roger-Yang skein algebra SLRY
q (Σ) of

a marked surface Σ is a C[v±1
i ]-algebra generated by isotopy classes of stated ∂-tangles in

Σ× (−1, 1), modulo the relations (A)–(D) and the following extra skein relations:

(E′) = q2 + q−1/2 ,

(F′) = = 0 and = q−1/2

The multiplication is defined as the stacking of ∂-tangles.

Remark 2.4. The ordinary Kauffman bracket skein algebra Sq(Σ) is defined as the algebra
generated by isotopy classes of loops in Σ × (−1, 1) modulo skein relations (A) and (B)
[Prz91, Tur91]. The definitions of SMRY

q (Σ) and SLRY
q (Σ) follow [BKL24], which combined

generalizations of the skein algebra from recent papers including [RY14, Mul16, Lê18,
CL22]. If Σ is a surface without any boundary, both SMRY

q (Σ) and SLRY
q (Σ) are specialized

to the Roger-Yang generalized skein algebra SRY
q (Σ) [RY14]. If Σ does not have any in-

terior puncture, SMRY
q (Σ) is Muller’s skein algebra in [Mul16], and SLRY

q (Σ) is the stated
skein algebra in [Lê18].

We will also consider several variations of SMRY
q (Σ) and SLRY

q (Σ) that have appeared
in the literature. First, there are the subalgebras generated by tangles that avoid interior
punctures. Let SM

q (Σ) be the subalgebra of SMRY
q (Σ) generated by all V -tangles that do not

intersect any interior punctures. Similarly, SL
q (Σ) is the subalgebra of SLRY

q (Σ) generated
by all ∂-tangles not meeting interior punctures. Note that relation (C) holds in SM

q (Σ) and
SL
q (Σ).

The next variations drop relation (C). Let SM+
q (Σ) (resp. SL+

q (Σ)) be a C-algebra gen-
erated by all V -tangles (∂-tangles) that do not meet any interior punctures modulo the
relataions (A), (B), (D), (E), and (F) (resp. (A), (B), (D), (E’), and (F’)). Then we have mor-
phisms

(1) SM+
q (Σ)

π→ SM
q (Σ)

i→ SMRY
q (Σ)

and

(2) SL+
q (Σ)

π→ SL
q (Σ)

i→ SLRY
q (Σ).

The first map π is an epimorphism and i is a monomorphism.
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FIGURE 1. A bad arc

The last variation we consider involves a quotient of the stated skein algebras. For each
boundary marked point p, a ∂-tangle in Figure 1 around p is called a bad arc.

Definition 2.5 ([CL22]). The reduced LRY generalized skein algebra SLRY

q (Σ) is the quotient of

SLRY
q (Σ) by the two-sided ideal generated by bad arc classes. Let p : SLRY

q (Σ) → SLRY

q (Σ)

be the quotient map.

We may define similar quotients SL

q (Σ) (resp. SL+

q (Σ)) of SL
q (Σ) (resp. SL+

q (Σ)) by the
bad arc classes. We will retain the same notation p for the quotient map.

3. COMPATIBILITY BETWEEN SKEIN ALGEBRAS

In Section 2, we introduced many variations of the skein algebra. From the algebraic
perspective, they are not altogether ‘different’ skein algebras, and in this section, we will
give a precise relationship between them. Our goal will be to justify the following com-
mutative diagram.

(3) SM+
q (Σ)

π
//

m

��

SM
q (Σ)

m

��

i
// SMRY

q (Σ)

m

��

SL+
q (Σ)

π
//

p
��

SL
q (Σ)

i
//

p
��

SLRY
q (Σ)

p
��

SL+

q (Σ)
π

//

r

SL

q (Σ)
i

//

r

SLRY

q (Σ)

r

SM+
q (Σ)[∂−1] // SM

q (Σ)[∂−1] // SMRY
q (Σ)[∂−1]

From their definitions, we already have the maps π, p, and i in the diagram. The mor-
phisms π and p are epimorphisms, and i is a monomorphism. We now define the mor-
phisms m and r.

The homomorphism

(4) m : SMRY
q (Σ)→ SLRY

q (Σ),
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comes from the ‘moving trick.’ Recall that SMRY
q (Σ) is generated by V -tangles, which are

one-dimensional submanifolds embedded in Σ× (−1, 1). So for each v ∈ V , the heights at
the ends are all distinct. For each v ∈ V∂ , we may draw a local diagram around v so that
all arcs ending at v are not tangent to each other, as the diagram on the left in Figure 3.
Then, by sliding the ends to the right component of v, we obtain a ∂-tangle. For each end
α∩∂Σ× (−1, 1), we assign a positive state. Using the skein relations in Definition 2.2, one
may check that this is a well-defined map and indeed an algebra homomorphism.

←→

FIGURE 2. Moving trick. The numbers under the left diagram describes
relative height of three ends at the boundary marked points.

The map m is an identity around the interior punctures. Thus, by the same argument,
we have similar homomorphisms

(5) SM+
q (Σ)→ SL+

q (Σ), SM
q (Σ)→ SL

q (Σ).

We will use the same letter m to denote the moving trick homomorphism, to avoid intro-
ducing too many notations. Because of the existence of negative states, unless ∂Σ = ∅, m
is not surjective.

We next define the map r. Let ∂ be the multiplicative subset of SMRY
q (Σ) generated

by boundary arc classes, which are connected V -tangles (hence a single arc) joining two
boundary marked points on the same connected component D of ∂Σ and isotopic to the
boundary edge connecting two adjacent marked points on D. Since any boundary arc
class is q-commutative with any V -tangles, ∂ satisfies the Ore condition [MR01, Section
2.1], hence we may define the Ore localization SMRY

q (Σ)[∂−1].

Proposition 3.1. For any surface Σ, there is an isomorphism

(6) r : SMRY
q (Σ)[∂−1]→ SLRY

q (Σ)

from the localized MRY skein algebra to the reduced LRY skein algebra.

Proof. We already have a homomorphism

(7) r = p ◦m : SMRY
q (Σ)→ SLRY

q (Σ)→ SLRY

q (Σ).
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For the algebras appear here, we have explicit C[v±1
i ]-module bases, consisting of tangles

without any intersection [BKL24, Theorem 3.6, Theorem 3.11, Proposition 6.2]. By check-
ing that the basis of SMRY

q (Σ) maps to a subset of the basis of SLRY

q (Σ), we may conclude
that r is a monomorphism.

For any boundary arc class α ∈ SMRY
q (Σ) and its image r(α) ∈ SLRY

q (Σ), the same curve
with negative states r(α) is the multiplicative inverse, so r(α)r(α) = 1 = r(α)r(α) [CL22,
Proposition 7.4]. By the universal property of the localization, we obtain a localized ho-
momorphism r : SMRY

q (Σ)[∂−1] → SLRY

q (Σ). Since the original map r is injective, so is the
localized r.

To show the surjectivity of r, it is sufficient to show that any arc α with negative state
is in im r. Deforming α near a boundary marked point and applying the relation (E’) in
Definition 2.3, we obtain the following relation.

= q1/2 − q5/2 = q1/2 ,

The first equality is from the skein relation and the second one is from the bad arc
relation. The last diagram is in im r. □

The proof of Proposition 3.1 does not affect the area near the interior punctures. Thus,
the same proof works for SM+

q (Σ) and SM
q (Σ) as well. In summary, we have the equalities

in Equation (3).

4. FINITE GENERATION OF SKEIN ALGEBRA

In this section, we prove that the skein algebras we consider are always finitely gener-
ated. In a way, this is rather surprising— as we will see later, the skein algebra contains a
copy of a cluster algebra, but in many cases the cluster algebra is not finitely generated.
Here we give a skein theoretic proof, extending [Bul99] and [BKWP16], where the finite
generation of Sq(Σ) and SRY

q (Σ) were shown. Alternatively, one may prove the finite

generation via quantum trace, as done in [BKL24] for SLRY

q .

Our strategy is based on the following observation. For a marked surface Σ, the interior
punctures in V◦ can be drawn on the boundary of a small circular disk D on int Σ (Figure
3). Then we may understand Σ as a union of a small open neighborhood D̃ of D and the
outside of D, that is, Σ \ int D. The latter is a surface without interior puncture – now
all marked points are on the boundary. We show that SMRY

q (Σ) is generated by the arc
classes in D and the curve classes whose supports are in Σ \ int D. The former has an
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FIGURE 3. A surface Σ with a disk D with all interior punctures on it

explicit finite set of generators [ACDHM21, Section 5]. For the latter, we may employ an
extension of the algorithm in [Bul99].

Our discussion will be focused on simple curves, which are curves without any inter-
sections in its diagram. Skein relations (A) and (D) imply that the C[v±1

i ]-algebra SMRY
q (Σ)

is generated by simple curves.

For a simple curve α, let c(α) be the number of connected components of int D \ α.
We may extend the definition to curves in the isotopy class of α, by taking c(α) as the
minimum of the possible numbers of connected components. The geometric intersection
number of α and D is i(α) := c(α)− 1, and i(α) = 0 if α does not meet int D.

We may assume that V◦ ⊂ ∂D are arranged counterclockwise with respect to the center
of D. Let βij be the straight line segment connecting vi and vj .

Lemma 4.1. Let α be a simple curve that intersects int D, so i(α) > 0. Then α is generated by
C[v±1

i ]-subalgebra generated by skeins which do not intersect int D and {βij}.

Proof. Suppose that α has one component with nontrivial intersections with int D. Let
B be one of the connected components of α ∩ int D such that one of two components of
(int D) \B does not have any other components of α.

There are two possibilities. If one endpoint of B is one of the interior punctures, then
as in Figure 4, α can be described as a combination of two simple curves α1, α2 and one
βij . Note that α1 and α2 either have smaller intersection number i, or the component
of (int D) \ B without other components of α has strictly smaller number k of interior
punctures. When k = 0, the intersection number strictly decreases, too. Thus, after finitely
many steps, we may describe α in terms of curves with i = 0, and βij .

If none of the endpoints of B is not an interior puncture, applying one puncture-skein
relation, we may describe α as a curve in the previous paragraph and another curve α′

with smaller number k of interior punctures on one of the components in (int D) \ B
(Figure 5). Therefore, after applying the relation finite times, we obtain the conclusion.

□

Now, it is sufficient to show that any skeins whose supports are in Σ \ int D is finitely
generated. For this purpose, by stretching the boundary of D, we may draw Σ \ int D as
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FIGURE 4. Intersection number reduction – when B meets a puncture

FIGURE 5. Intersection number reduction – when B does not meet a puncture

FIGURE 6. Drawing of Σ \ int D – the outer boundary is ∂D

in the right figure in Figure 6. This diagram is obtained by attaching several handles on
a rectangular strip, and all marked points are on the strip itself, not on attached handles.
In particular, there is no marked points on the handles. The long dashed boundary is ∂D,
and the original boundary of Σ is drawn on the top row.

Suppose that α ∈ SMRY
q (Σ) is a simple connected curve whose support is in Σ \ int D.

We fix an arbitrary orientation on α. Assume that there is a handle H on Σ such that α
traverses H multiple times in the same direction. See the left figure in Figure 7. Then
an ordinary skein relation can be applied to rewrite the curve in terms of curves that
traverse H strictly fewer times (Figure 7). Note that the rightmost diagram is a product of
two disjoint curve classes, and each of these curves traverses H strictly fewer times than
the original diagram on the left hand side of the equation. By applying this argument in
pairs, we may assume that α travels each handle at most twice, and if so, it travels exactly
twice in the opposite direction.

Next, suppose that there is a handle H where α travels twice, in opposite directions
(top left of Figure 8). We may employ the ordinary skein relations three times, to write it
as a combination of curves which traverse the handle at most once. See Figure 8.
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FIGURE 7. Complexity reduction 1

FIGURE 8. Complexity reduction 2

Note that Bullock applied the above algorithm only to loops in [Bul99]. However, the
argument works equally well for arc classes. This is because the resolutions in Figures 7
and 8 do not change the part of the arc outside H (on the parts of the arc diagram that are
dotted in the figures).

In summary, any simple curve can be generated by simple curves that traverse each
handle at most once. These curves can be described by choosing the finite sequence of
traveling handles in the case of loops and by choosing the initial/terminal marked points
and the sequence of traveling handles in the case of arcs. (We do not claim that all se-
quences of handles will give simple curves and arcs – they may induce self-intersections.)
Thus, there are only finitely many possibilities. As a result, we obtain the proof of Theo-
rem A.

Corollary 4.2. The skein algebras SLRY
q (Σ) and SLRY

q (Σ) are finitely generated.

Proof. The skein algebra SLRY
q (Σ) can be generated by 1) the image of a generating set

of SMRY
q (Σ) by m : SMRY

q (Σ) → SLRY
q (Σ), and 2) the same set of curves with different

states. The algebra SMRY
q (Σ) is generated by finitely many loops and arcs, and for each

arc connecting boundary marked points, there are only finitely many ways to impose the
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states. Therefore, SLRY
q (Σ) is finitely generated, too. A homomorphic image of a finitely

generated algebra is also finitely generated, so the same thing holds for SLRY

q (Σ). □

Remark 4.3. One can show SLRY

q (Σ) is finitely generated in another way, directly from
from Proposition 3.1. Since SMRY

q (Σ)[∂−1] is an Ore localization of a finitely generated
algebra by a finitely generated multiplicative subset ∂, it is also finitely generated.

Remark 4.4. The finite generating set from the proof of Theorem A is not guaranteed to
be minimal. Note that the non-boundary handles appear as pairs. Suppose that α travels
both handles (say H1 and H2) in a pair. Bullock proved that α can be generated by curves
that passes H2 immediately traveling after H1 [Bul99]. A minimal set of generators is not
known, and is closely related to the computation of an explicit presentation of SMRY

q (Σ).
See Section 7.1.

If we remove each interior puncture by a new boundary component without a marked
point, the same proof of Theorem A works for SM+

q (Σ). Then we also obtain that SL+
q (Σ)

is finitely generated in the same way. Any homomorphic image of a finitely generated
algebra is also finitely generated, so we obtain the following corollary.

Corollary 4.5. The skein algebras SM+
q (Σ), SM

q (Σ), SL+
q (Σ), SL

q (Σ), S
L+

q (Σ), and SL

q (Σ) are all
finitely generated.

Remark 4.6. For any oriented surface Σ with n interior punctures, we may draw the
punctures on a small circular disk D as we did in the proof of Theorem A. Then for a
small open neighborhood Dn of D, there is a natural morphism

(8) SMRY
q (Dn)→ SMRY

q (Σ).

In other words, SMRY
q (Σ) admits an SMRY

q (Dn)-algebra structure. Note that Dn is home-
omorphic to R2

n, the n-punctured R2. Its skein algebra was calculated in [ACDHM21,
Section 5].

5. CLUSTER ALGEBRA OF SURFACE

We next consider the cluster algebra A(Σ) coming from the curves in a triangulable ori-
ented surface Σ. In this section, we give a brief definition of A(Σ). A more detailed
description and further properties of A(Σ) can be found in [FST08, FT18]. In Section 6,
we will explain its relationship with the skein algebra.

5.1. Informal description. Let Σ = (Σ, V ) be a surface that admits an ideal triangulation
∆, with the set of vertices V . Here an ideal triangulation always contains all boundary
arcs. Let E := {xi} be the set of edges in ∆. The cluster algebra A(Σ) is defined as some
subalgebra of the field of fractions C(E) := C(xi|i∈I) generated by edges in E subject
to geometrically motivated relations. Because the formal definition will require some
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FIGURE 9. Example of a flip of triangulation and the associated Ptolemy relation

additional structure on the edges, it may seem overly technical at first. We thus start
with an intuitive description to give the flavor of the construction and worry about the
technical details later.

The basic construction of the cluster algebra is based on the following idea. For a given
triangulation ∆ and a choice of an internal diagonal edge x of a quadrilateral, we may flip
the diagonal edge x in the triangulation to the other diagonal edge x′ of the quadrilateral.
This move produces a new triangulation ∆′ where all edges are the same as in ∆ except
that x is replaced by a flipped edge x′ (Figure 9).

In the cluster algebra, we relate the edges x and x′ using the Ptolemy relation, which
comes from the geometry of relating the lengths of the edges of the quadrilateral with
its diagonals. More specifically, suppose that the quadrilateral has edges x1, x2, x3, and
x4, and flipping the diagonal x of the quadrilateral gives a new diagonal x′, as in Figure
9. In this case, the Ptolemy relation between x and x′ is defined to be xx′ = x2x4 + x1x3.
Observe that the product xx′ is a ‘binomial’ with respect to the quadrilateral edges x1, x2,
x3, and x4, and that x′ is a rational function with respect to edges in ∆. As a result, we can
think of the edges in the new triangulation ∆′ as belonging in the field of fractions of the
edges of the original triangulation ∆. Moreover, the combinatorial changes between the
edges of ∆ and ∆′ can also be encoded algebraically by way of mutation of the adjacency
matrices, and we will provide these equations later.

The cluster algebra A(Σ) we seek to define is very ‘close’ to the subalgebra of C(E)

generated by all the edges of all possible triangulations subject to the Ptolemy relation
and mutation of adjacency matrices. Importantly, the resulting A(Σ) can be regarded as
an algebra of all arcs on Σ. Recall that, any embedded arc between two vertices belongs
to some ideal triangulation on Σ. Moreover, any two ideal triangulations are connected
by finitely many flips. In the algebra, each time we flip an edge in ∆′, we obtain a new
triangulation with one new edge that is related to the old ones by the Ptolemy relation.
Although the number of generators of the cluster algebra is a priori infinite, it turns out
that any arc can be written in terms of the edges of the original triangulation ∆. The
upshot is that we can think of any embedded arc of Σ as belonging in A(Σ), and the
cluster algebra A(Σ) is an algebra of curves.
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FIGURE 10. No flip for self-folded triangles

FIGURE 11. Three types of tagged arcs

However, there are some technical issues that arise when aligning this intuitive con-
struction of A(Σ) with the standard definition of cluster algebras. In particular, all el-
ements of a cluster algebra should be flippable. However, boundary edges are never
diagonals of any quadrilaterial and hence never flippable. This can be accounted for by
using a version of the cluster algebra where the boundary edges are frozen variables. In
cluster algebra literature, it is common to include the multiplicative inverses of the frozen
variables, so we will take the same convention.

A more serious issue comes up when there are interior punctures. In particular, con-
sider the part of an ideal triangulation in Figure 10. One may flip the top interior edge,
to get a new triangulation with a self-folded triangle. However, now the bottom edge
connecting the two bottom punctures (inside of the self-folded triangle) is no longer a
diagonal of a quadrilateral and thus cannot be flipped.

To rectify this issue, in [FST08], Fomin, Shapiro, and Thurston introduced the additional
structure of tagged arcs to account for the combinatorics of self-folded triangles. A tagged
arc is a topological arc where each end can be decorated by one of two taggings, plain
or notched. The notched end is denoted by drawing a small bowtie, and the plain end is
unmarked. The three possible types of tagged arcs are illustrated in Figure 11.

Triangulations can then be generalized to include tagged arcs, and every tagged arc
can now be flipped as in Figure 12. This new diagrammatic procedure for tagged arcs
is called a tagged flip, and its combinatorics are designed to match that of ordinary flips
along diagonals of quadrilaterals. For the details, see [FST08, Section 7], [MW24, Section
3].

We emphasize that a tagged arc can have a notched end only at an interior puncture.
Boundary arcs and arcs connecting boundary marked points cannot have any tags. So, in
the absence of interior punctures, the additional structure of tagging is not needed at all
to define the cluster algebra of the surface.
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FIGURE 12. Tagged flip

FIGURE 13. Adjacency matrix B

5.2. Formal definition. In this section, we give a quick reminder of the construction of
the cluster algebra of surfaces. For the general theory of cluster algebras, [Wil14] is an
excellent introduction. For the details of the tagged arcs and tagged triangulations, see
[FST08, Section 7].

Let ∆ be a tagged ideal triangulation on Σ. In other words, ∆ is a maximal collection
of pairwise compatible tagged arcs.1 Let E be the set of edges in ∆, and I be a fixed index
set for edges in E. We divide I = I∆ = I◦ ⊔ I∂ , where I◦ is the index set for interior edges
and I∂ is the index set for boundary edges.

A seed is a collection of data (E,B), where E is the set of edges in ∆ and B = (bij) is
an I × I matrix such that its entry is given by Figure 13, that is, a signed counting of the
adjacency of two edges xi and xj on the triangulation, i.e. xi and xj are edges of an ideal
triangle. Thus, −2 ≤ bij ≤ 2 and B is a skew-symmetric matrix. The matrix B is called
the exchange matrix.

For each choice of k ∈ I◦, we can construct a new seed in the following way. Observe
that there is a unique way to flip xk to another arc x′

k, corresponding to the procedure of
Figure 9 or 12. We may thus replace xk by x′

k in ∆ to obtain a new tagged triangulation ∆′.
Let E ′ denote the new set of edges in ∆′. For edges i ̸= k, xi = x′

i. In the cluster algebra,
the exchange relation relates the variables xk and x′

k by

(9) xkx
′
k =

∏
bjk>0

x
bjk
j +

∏
bjk<0

x
−bjk
j .

1Here, two tagged arcs are said to be compatible if their untagged versions are disjoint except at V and
their taggings satisfy a technical condition if they share an endpoint: if the two arcs are not isotopic and
meet at an endpoint, then their taggings at that end must be identical; and if the two arcs are isotopic and
meet at an endpoint, then at least one one of the two ends must be identical.
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The new exchange matrix B′ = (b′ij) for ∆′ is then

(10) b′ij :=

{
−bij, if i = j or j = k,

bij +
1
2
(|bik|bkj + bik|bkj|), otherwise.

The cluster mutation in the k-th direction is defined to be the map µk : (E,B) → (E ′, B′).
One can check that this formal definition captures the combinatorial changes from flip-
ping an edge. One can also check that µk is an involution, i.e., µ2

k = id.

Notice that boundary edges correspond to frozen variables. In particular, cluster muta-
tion is not defined for k ∈ I∂ .

Definition 5.1. Let Σ be a triangulated surface with an initial seed (E,B) coming from a
fixed triangulation ∆. The cluster algebra A(Σ) is a subalgebra of C(E) generated by

(11)
⋃

(E′,B′)

({x′
i|i∈I◦} ∪ {x′±1

j |j∈I∂})

for all cluster seeds obtained by taking a finite sequence of cluster mutations.

It is well-known that A(Σ) does not depend on the choice of the initial seed. Thus, it is
an invariant of a marked surface Σ = (Σ, V ).

Example 5.2. Let Σ1,1 be the torus with one interior puncture. We draw the torus using
a standard square diagram as in Figure 14. We fix an ideal triangulation ∆ with E =

{x1, x2, x3}. One may check that its exchange matrix is

(12) B =

 0 2 −2
−2 0 2

2 −2 0

 .

Flipping x3, we obtain a new triangulation as in the right figure in Figure 14. This cluster
mutation µ3 results in a new seed (E ′ = {x1, x2, x

′
3}, B′), where

(13) B′ =

 0 −2 2

2 0 −2
−2 2 0

 .

Remark 5.3. When Σ = Σg,1 is a surface with one interior puncture and without boundary,
one can check that no triangulation admits any self-folded triangle as in the second Figure
in Figure 10 and any arc is flippable. In particular, tagged arcs are unnecessary to define
A(Σ).

Theorem 5.4 ([FST08, Theorem 7.11]). Let Σ be a triangulated surface with an initial seed
(E,B) coming from a fixed triangulation ∆. Suppose that Σ is not a once-punctured surface
without boundary. Then the cluster algebra A(Σ) is generated by arcs and tagged arcs. If Σ is a
once-punctured surface without boundary, or a surface without interior puncture, then A(Σ) is
generated by ordinary arc classes.
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x1x1

x2

x2

x3

x1x1

x2

x2

x′
3

FIGURE 14. Once punctured torus

Remark 5.5. In this paper, we focus on the cluster algebra A(Σ) of a triangulated surface
Σ. However, the cluster algebraA can be defined for more general situation. Suppose that
we have a finite list of variables E = {ei}i∈I , a decomposition of the index set I = Iunf⊔Ifro
(Note that in the case of A(Σ), Iunf = I◦ and Ifro = I∂ .) and a skew-symmetric integral
matrix B. Then A is defined as subalgebra of C({ei}) that is generated by

(14)
⋃

(E′,B′)

({x′
i|i∈Iunf

} ∪ {x′±1
j |j∈Ifro})

where (E ′, B′) is a cluster seed obtained by taking a finite sequence of cluster mutations.

5.3. Upper cluster algebra. For each cluster algebra A, one may define another algebra,
the so-called upper cluster algebra U , which seems to be more natural from the algebraic
geometry viewpoint and behave better algebraically [BFZ05]. In this section, we review
the definition of the upper cluster algebra U(Σ) in the context of a cluster algebra of a
surface A(Σ).

Let Σ be a triangulated marked surface andA(Σ) be the cluster algebra associated to Σ.
Recall that any two cluster seeds (E,B) and (E ′, B′) are connected by a finite sequence of
cluster mutations. So by applying the exchange relation (9) finitely many times, we may
algebraically relate E with E ′. More specifically, if we denote E = {xi} and E ′ = {x′

i},
any xi can be written as a rational function with respect to {x′

i}. One can say more about
the type of rational functions obtained in this way.

Theorem 5.6 (Laurent phenomenon [FZ02, Theorem 3.1]). For any two cluster seeds (E =

{xi}, B) and (E ′, {x′
i}, B′) for A,

(15) x′
i ∈ C[x±1

1 , x±1
2 , · · · , x±1

n ].

In other words, x′
i is a Laurent polynomial with respect to any cluster seed.

Definition 5.7. Consider a cluster algebraA ⊂ C(E). The upper cluster algebra U is defined
as the set of all elements in C(E) that can be written as a Laurent polynomial with respect
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to arbitrary seeds. In other words,

(16) U :=
⋂

(E′={x′
i},B′)

C[x′±1
1 , x′±1

2 , · · · , x′±1
n ].

Now Theorem 5.6 implies that A is a subalgebra of U . There are several cases that one
can show A = U [Mul13, MSW13, CLS15, Mul16, MS16, IOS23]. However, in general,
U maybe strictly larger than A, and deciding whether A = U or not is a challenging
problem. See Section 6.2 for the case of A(Σ).

6. COMPATIBILITY BETWEEN SKEIN ALGEBRA AND CLUSTER ALGEBRA

We now prove Theorem B, starting with a review of relevant definitions.

6.1. Cluster algebra in skein algebra. Fix a tagged triangulation ∆, or equivalently, a
cluster seed (E = {xi}, B) of A(Σ) where each xi corresponds to a tagged arc. Note that
if a tagged arc xi ends at an interior puncture v ∈ V◦, then that end of xi can be decorated
in one of two ways: plain or notched. See Figure 11. For each tagged arc α, let α be
its underlying topological arc after forgetting its tags. We can then understand α as an
element of SMRY

1 (Σ).

Consider the subalgebra C[xi|i∈I◦ , x±1
j |j∈I∂ ] ⊂ C(E).

Definition 6.1. Fix a cluster seed (E = {xi}, B). Suppose that xi is a tagged arc connecting
v and w (not necessarily distinct). We set

(17) ρ∆(xi) :=


xi if both ends are tagged plainly,

vxi if only the end at v is notched,

wxi if only the end at w is notched,

vwxi if both ends are notched.

.

By extend it using the universal property of the polynomial ring, we obtain an algebra
homomorphism

(18) ρ∆ : C[xi|i∈I◦ , x±1
j |j∈I∂ ]→ SMRY

1 (Σ)[∂−1].

Note that any boundary edge xj is not tagged. Thus, x±1
j simply maps to xj

±1 and gives a
well-defined element in SMRY

1 (Σ)[∂−1].

The slogan for ρ is: “A tag is a vertex class.” Whenever one has a notch on a tagged arc,
replace the notched end by a vertex class.

Proof of Part (1) of Theorem B. For each cluster seed, we have a well-defined homomor-
phism ρ∆ in (18). To prove the statement, we first show that these homomorphisms are
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FIGURE 15. A tagged flip of an edge of triangulation

compatible: If ∆ and ∆′ are connected by a single flip, then for any element in

(19) C[xi|i∈I◦ , x±1
j |j∈I∂ ] ∩ C[x′

i|i∈I◦ , x′±1
j |j∈I∂ ],

the image of ρ∆ and ρ∆′ coincide. Thus, we may ‘glue’ the two homomorphisms to get ρ.

One may describe all possible tagged flips and for each one, calculating the mutation
explicitly. It was done in [MW24, Proposition 4.3] using puzzle pieces. The paper covered
only surfaces without boundary, but note that we do not flip any boundary edge, so the
same list of cases covers all possible cases here, too.

To give a flavor of the type of computation, we now reproduce the proof using puzzle
pieces for one particular case. Consider the tagged flip ∆ → ∆′ described in Figure 15.
For this flip, the only nontrivial change is made for x, and by the exchange relation (9),
we obtain xx′ = x2 + x3. On the other hand, the puncture-skein relation in Definition 2.2
(after setting q = 1) provides v2xx′ = x2 + x3. Therefore,

(20) ρ(xx′) = v2xx
′ = x2 + x3 = ρ(x2 + x3).

With similar calculations on other cases, we obtain a well-defined morphism ρ : A(Σ)→
SMRY
1 (Σ)[∂−1]. To finish the proof, we need to show that ρ is a monomorphism.

Fix an ordinary triangulation ∆ whose set of edges is E = {xi}. We claim that both
A(Σ) and SMRY

q (Σ)[∂−1] admit a morphism to the Laurent polynomials in {xi},

L∆ := C[x±1
1 , x±1

2 , · · · , x±1
n ].

For A(Σ), the Laurent phenomenon of Theorem 5.6 provides an inclusion A(Σ) ⊂ L∆.
We denote the inclusion map by ι. For SMRY

1 (Σ), one needs to show that any vertices and
loop classes are Laurent polynomials. The computation for the loop classes and general
arc classes not necessarily in ∆ is well-known in skein theory literature. For instance, see
[RY14, Theorem 3.22]. Applying puncture-skein relation, any interior puncture is also a
Laurent polynomial in E. For instance, in Figure 15, v2xx′ = x2 + x3.
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Thus, we have the following commutative diagram of commutative algebras:

(21) A(Σ)
ρ

//

ι

""

SMRY
1 (Σ)[∂−1]

ι′

xx

L∆.

Since ι = ι′ ◦ ρ is injective, ρ is injective, too. □

Remark 6.2. Note that the above proof does not claim that ι′ is also injective. We believe
it has to be shown separately. If any edge is not a zero divisor, then the localization map
ι′ is injective. But how do we know that the multiplication of an arc on SMRY

1 (Σ)[∂−1]

is injective? One way to show it is using dimension theory from algebraic geometry.
Apply an algebraic ring extension Ã(Σ) of A(Σ) in C(E) and construct an epimorphism
ρ̃ : Ã(Σ) → SMRY

1 (Σ)[∂−1]. Since ρ̃ is an epimorphism from an integral domain with the
same dimension, its kernel is trivial [MW24, Theorem 5.2]. Thus, Ã(Σ) ∼= SMRY

1 (Σ)[∂−1]

and the latter is an integral domain, and any nonzero element is not a zero divisor.

Observe that the above proof tells us that any loop class in SMRY
1 (Σ)[∂−1] is a Laurent

polynomial with respect to any fixed ordinary triangulation. The same Laurent poly-
nomial formula also applies to tagged triangulation [MSW11, Proposition 3.15]. It thus
follows that all loop classes are in U(Σ). However, even though each vertex class is a
Laurent polynomial with respect to an ordinary triangulation, it is not with respect to a
tagged triangulation. Therefore, it does not belong to U(Σ).

Definition 6.3. Let S□
q (Σ) be a subalgebra of SMRY

q (Σ)[∂−1] generated by:

(1) loop classes;
(2) all arc classes;
(3) all formal inverses of boundary arc classes;
(4) if β is an arc class connecting two (non-necessarily distinct) interior punctures v

and w; vβ, wβ, and vwβ;
(5) if β is an arc class connecting an interior puncture v and a boundary marked point,

vβ.

Proof of Part (2) of Theorem B. When q = 1, we may define S□
1 (Σ) in a simpler way: It is a

subalgebra of SMRY
1 (Σ)[∂−1] generated by the image of ρ and the loop classes. Since S□

1 (Σ)

is generated by ρ(A(Σ)) and the loop classes, any element in S□
1 (Σ) is in U(Σ). □

We also obtain the following structural results:

Proposition 6.4. Let Σ be a marked surface.

(1) S□
q (Σ) is finitely generated.

(2) S□
1 (Σ) is an integral domain.
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Proof. One may note that if one start with a generator in S□
q (Σ), the reduction process

described in Section 4 makes elements in S□
q (Σ) only. Thus, the same proof of the finite

generation works for S□
q (Σ). This proves (1).

Item (2) is an immediate consequence of Theorem B because U(Σ) is an integral domain.
□

6.2. Applications of Compatibility. There are a few applications to the structure ofA(Σ).
In general, it has been observed that the ordinary cluster algebra Amay behave badly,

but its upper cluster algebra has better structure. For instance, in many cases, U is a
finitely generated algebra, hence it defines an affine irreducible algebraic variety Spec U .
(However, there are some infinitely generated examples [Spe13, GHK15].) Moreover, U is
integrally closed [Mul13, Proposition 2.1], so Spec U is a normal variety, which means its
singularity type is relatively mild (the singular locus is of codimension ≥ 2, etc.). So one
may ask if A = U , for a given cluster algebra.

In the case of cluster algebra A(Σ) of surfaces, if there is at least one boundary com-
ponent, then A(Σ) = U(Σ) [Mul13, MSW13, CLS15, MS16]. On the other hand, if Σ is
a surface without boundary but with one interior puncture, then A(Σ) ̸= U(Σ) [Lad13],
which was shown by constructing an explicit element in U(Σ) \ A(Σ).

An application of the compatibility between A(Σg,n) and SMRY
1 (Σg,n) can be used to

show thatA(Σg,n) ̸= U(Σg,n) when g ≥ 1 [MW24, Section 6]. We summarize the argument
here. Using techniques from invariant theory with Z/2Z-coefficients, it was shown that
A(Σg,n) with g, n ≥ 1 cannot be generated by finitely many elements [MW24, Theorem C].
By way of contradiction, assume A(Σg,n) = U(Σg,n). Since A(Σg,n) ⊂ S□

1 (Σg,n) ⊂ U(Σg,n),
this would imply that A(Σg,n) = S□

1 (Σg,n). But S□
1 (Σg,n) is finitely generated (Proposition

6.4), a contradiction.

In the case of Σ0,n, the n-punctured sphere, it was a folklore conjecture that A(Σ0,n)

is finitely generated. The computation in [ACDHM21] indeed implies that A(Σ0,n) =

S□
1 (Σ0,n). Therefore, the finite generation ofA(Σ0,n) follows. We do not know ifA(Σ0,n) =

U(Σ0,n) or not.

The finite generation problem for A(Σ) itself is an interesting problem. As we men-
tioned earlier, it was shown that A(Σg,n) is not finitely generated when g, n ≥ 1 [MW24,
Section 6]. Note that from Proposition 6.4 and Theorem B, when A(Σ) = U(Σ), we im-
mediately obtain the finite generation of A(Σ). The previous results and the discussion
above show that if the given triangulated surface Σ has boundary or Σ = Σ0,n, A(Σ) is
finitely generated. Therefore, we have a complete understanding on the finite generation
problem for A(Σ).
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Remark 6.5. The skein algebra Sq(Σ) and its variations are non-commutative (except for
some small surfaces), and one can think of them as ‘quantum’ versions of the commuta-
tive S1(Σ). Similarly, one may wonder if we can obtain a ‘quantum’ analogue Aq(Σ) of
A(Σ). More generally, for a cluster algebra A whose exchange matrix is of full-rank, its
deformation quantization Aq(Σ) was studied in [BZ05] and called the quantum cluster
algebra. However, if the exchange matrix is not of full-rank, it is not possible to obtain
Aq(Σ) [BZ05, Proposition 3.3]. It is also well-known that the exchange matrix B for Σ is
not of full-rank if Σ has an interior puncture. Thus, for a surface with an interior puncture,
Aq(Σ) does not provide a desired deformation quantization.

On the other hand, note that SMRY
q (Σ) can be defined for any oriented surface Σ and it

is a quantization of SMRY
1 (Σ). Therefore, from Theorem B, we may understand SMRY

q (Σ)

as a quantization of A(Σ).

7. OPEN QUESTIONS

In this last section, we leave a few open questions on the structures of cluster algebras
and skein algebras of surfaces.

7.1. Algebraic structure of skein algebras. By Theorem A, SMRY
q (Σ)[∂−1] and its vari-

ations are all finitely generated algebras. However, numerous questions remain about
its multiplicative structure. For example, a presentation of the skein algebra is currently
known only for a few small surfaces.

Question 7.1. (1) Compute a presentation of SMRY
q (Σ)[∂−1].

(2) Find a minimal number of generators of SMRY
q (Σ)[∂−1].

To the best of our knowledge, the presentation has been computed for the once-puncture
torus Σ1,1 [BPKW16] and for the n-punctured sphere Σ0,n [ACDHM21]. Note that in these
two cases, there is no boundary component, so the localization is not necessary. Even
though it is not explicitly stated, the case of a disk with n boundary marked points can be
obtained from [FZ03, Section 12]. The case of the annulus with one marked point on each
boundary component appears in [Lê15].

Recall that Dn is an n-punctured open disk. Note that when q = 1, the commuta-
tive algebra SMRY

1 (Dn) naturally appears in many different contexts, including in classical
invariant theory, as the coordinate ring of the Grassmannian, and in tropical geometry.
Consult [ACDHM21, Remark 5.2] for additional discussion.

Question 7.2. Identify SMRY
q (Σ) for a simple surface Σ with other algebraic structures.

One may investigate other algebraic properties of SMRY
q (Σ). It has been known that

SMRY
q (Σ) is a domain [BKL24] as a corollary of an embedding into a quantum torus, and

its center has been calculated when q is a primitive root of unity of odd order [KMW25].
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A similar result was obtained for Z(SL+
q (Σ)) in [Yu23a] and for Z(SL+

q (Σ)) in [Kor21].
From its connection to the cluster algebra, it has been conjectured that SMRY

q (Σ) has a
‘positive basis,’ that is, a Z[q±1/2][v±1

i ]-basis whose multiplicative structure constants are
all in Z≥0[q

±1/2][v±1
i ] [Thu14] after we replace C with Z[q±1/2] in the ground ring. See

related results in [DM21, MQ23].

Question 7.3. (1) Do the generalized skein algebras each admit a positive basis?
(2) Compute the structure constants and describe them geometrically.

For a partial evidence for SRY
1 (Σ), see [Kar24].

7.2. Upper cluster algebra. From Section 6, we have that A(Σ) ⊂ S□
1 (Σ) ⊂ U(Σ). Cur-

rently, there are no known elements in U(Σ) but not in S□
1 (Σ). This suggests:

Question 7.4. Is it true that S□
1 (Σ) = U(Σ)?

Between A(Σ) and U(Σ), there is another algebra motivated by mirror symmetry, so-
called the mid cluster algebraM(Σ) [GHKK18]. It was shown that S□

1 (Σ) =M(Σ) [MQ23,
Theorem 1.3]. It is not known whether or notM(Σ) and U(Σ) are equal.

Observe that if S□
1 (Σ) = U(Σ), Proposition 6.4 implies that U(Σ) is finitely generated.

This compatibility of A(Σ) and SMRY
q (Σ) seems to be a part of more general phenom-

enon. One may understand our A(Σ) as the theory with the structure group SL2, in the
framework of higher Teichm̈uller theory in [FG06]. For some other structure groups of
row rank, there are similar results [IOS23, IY23]. It suggests that for a higher structure
group, where the skein theory is not clear, the skein algebra is expected to be ‘defined’ as
the upper cluster algebra.

7.3. Representation theory of skein algebra. A natural next step would be to study the
representation theory of SMRY

q (Σ). There have been some investigations for quantum clus-
ter algebras and localized Muller skein algebras with boundary edges [MNTY24, Kor21,
Kor22, KK23]. However, less is known about the representation theory for variations of
the skein algebra in the presence of interior punctures, as in the Roger-Yang skein algebra.

Based on techniques adapted from these earlier works, [KMW25, Proposition 5.5] showed
that when q is an odd primitive root of unity, SMRY

q (Σ) (hence SMRY
q (Σ)[∂−1] too) is an al-

most Azumaya algebra. This means ‘most’ of irreducible representations can be identified
with points in an open dense subset U ⊂ MaxSpec Z(SMRY

q (Σ)). See [KMW25, Section
5] for more details. The open set U is called the Azumaya locus of MaxSpec Z(SMRY

q (Σ)).
The center Z(SMRY

q (Σ)) was calculated in [KMW25, Theorem A]. However, we do not yet
have an explicit description of the representations of SMRY

q (Σ).

Question 7.5. (1) Describe the Azumaya locus U ⊂ MaxSpec Z(SMRY
q (Σ)) explicitly.
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(2) For each point m ∈ U , construct the corresponding finite dimensional irreducible
representation V of SMRY

q (Σ) geometrically.

The ordinary skein algebra Sq(Σ) can be regarded as a quantization of the Teichmüller
space of Σ, and its representations are closely related to hyperbolic geometric data of the
surface Σ. Similarly, since SMRY

q (Σ) is based on combinatorial data from the decorated
Teichmüller space of Σ by extending the discussion in [RY14, Mul16], it would be inter-
esting to see how the representations of SMRY

q (Σ) are related to the hyperbolic geometry
of Σ as well.
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