MATH 3005 MIDTERM EXAM 2 SOLUTION

SPRING 2014 - MOON

Write your answer neatly and show steps.

Any electronic devices including calculators, cell phones are not allowed.

- (1) Write the definition.
 - (a) (3 pts) An even permutation.

A permutation σ is called an even permutation, if it is a product of even number of 2-cycles.

(b) (3 pts) An isomorphism of groups.

For two groups *G* and \overline{G} , a map $\phi : G \to \overline{G}$ is called an isomorphism if ϕ is one-to-one, onto and for all $x, y \in G$, $\phi(xy) = \phi(x)\phi(y)$.

(c) (3 pts) For a permutation group *G* on a set *S* and $a \in S$, the orbit of *a*. The orbit $\operatorname{orb}_a(G)$ is the set $\{\phi(a) \mid \phi \in G\}$.

Date: April 4, 2014.

(2) Let $\alpha = (134562), \beta = (1243)(56)$ be two permutations in S_6 .

(a) (3 pts) Compute β^{-1} as a product of disjoint cycles.

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 1 & 3 & 6 & 5 \end{bmatrix} \Rightarrow \beta^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 1 & 4 & 2 & 6 & 5 \end{bmatrix}$$
$$\Rightarrow \beta^{-1} = (1342)(56)$$

(b) (3 pts) Compute β^{-1} as a product of two cycles.

$$\beta^{-1} = (1342)(56) = (12)(14)(13)(56)$$

(c) (4 pts) Compute $\beta \alpha \beta^{-1}$ as a product of disjoint cycles.

 $\beta\alpha\beta^{-1} = (1243)(56)(134562)(1342)(56) = (136542)$

• If (a) is incorrect, then -1 pt from (b) and (c).

(3) (8 pts) Prove that D_6 is *not* isomorphic to A_4 .

 D_6 has an element of order 6, a rotation by 60° . On the other hand, an even permutation σ in A_4 is of the form (ab)(cd) or (abc). So its order is 2 or 3. Therefore D_6 is not isomorphic to A_4 .

- Indicating D_6 has an order 6 element: 3 pts.
- Mentioning that A_4 doesn't have an order 6 element: 3 pts.
- Explaining why A_4 has no order 6 element: 2 pts.
- (4) (8 pts) Let *H* be a subgroup of *G*. Let $a, b \in G$. Prove that aH = bH if and only if $a \in bH$.

Suppose that aH = bH. Then $a = ae \in aH = bH$.

Conversely, suppose that $a \in bH$. Then a = bh for some $h \in H$. For any $ak \in aH$ for some $k \in H$. So $ak = bhk \in bH$ and therefore $aH \subset bH$. Because $b = ah^{-1}$, for any $bt \in bH$ with $t \in H$, $bt = ah^{-1}t \in aH$ and $bH \subset aH$. Therefore we have aH = bH.

- Showing that aH = bH implies $a \in bH$: 3 pts.
- Proving that $aH \subset bH$ when $a \in bH$: 2 pts.
- Showing that $bH \subset aH$ when $a \in bH$: 3 pts.

- (5) Let G be a group of order 55.
 - (a) (4 pts) List all possible orders of a subgroup of *G*.

For $H \le G$, by Lagrange's theorem, |H|||G| = 55. So |H| = 1, 5, 11, 55.

- Excluding 1 or 55: -1 pt.
- (b) (5 pts) Suppose that H, K are two distinct subgroups of G of order 11. Show that $H \cap K = \{e\}$.

 $H \cap K$ is a subgroup of H. By Lagrange's theorem, $|H \cap K|||H| = 11$. So $|H \cap K| = 1$ or 11. If $|H \cap K| = 11 = |K| = |H|$, then $K = H \cap K = H$. Because H and K are two distinct subgroups, $|H \cap K| = 1$ so $H \cap K = \{e\}$.

(c) (6 pts) By using (b), show that there is an element $a \in G$ of order 5.

Pick a nonidentity $x \in G$. Then |x| = 5, 11, 55. If |x| = 5, x is what we want. If |x| = 55, then *G* is cyclic and x^{11} is an order 5 element.

Sol 1. Suppose that there is no order 55 element. If H and K are two distinct subgroups of order 11, then $|HK| = \frac{|H||K|}{|H \cap K|} = \frac{11^2}{1} = 121$. But $|HK| \le |G| = 55$ so it is impossible. Therefore there is only one subgroup H of order 11. If we take $x \in G - H$, then |x| = 5 because if not, |x| = 11 and $\langle x \rangle$ is a subgroup of order 11 which is different from H.

Sol 2. If |x| = 11, then $\langle x \rangle$ is an order 11 subgroup of *G*. Because the intersection of any two order 11 subgroups is only the identity, the number of order 11 elements is 10k + 1 for some $k \in \mathbb{N}$. Since 55 is not of the form 10k + 1, there must be an order 5 element.

(6) (10 pts) Four dwarves and four elves are going to discuss how to protect middle earth from the attack of Sauron. On a round table with eight seats, how many distinguishable ways can they be seated?

Let *S* be the set of all arrangements of four dwarves and four elves on the table. Then the number of elements of *S* is $\binom{8}{4} = 70$. Because if one takes a rotation of the table, then we obtain an indistinguishable arrangement, a permutation group *G* isomorphic to \mathbb{Z}_8 permutes *S*. Let $G = \langle R_\theta \rangle$, where R_θ is a counterclockwise rotation by $\theta = \frac{360}{8}^\circ = 45^\circ$.

For id, $\operatorname{fix}(\operatorname{id}) = S$ and $|\operatorname{fix}(\operatorname{id})| = 105$. For R_{θ} , there is no fixed arrangement because for a fixed arrangement, all seats has to be assigned for dwarves only or elves only. So $|\operatorname{fix}(R_{\theta})| = 0$. By the same reason, $|\operatorname{fix}(R_{\theta}^3)| = |\operatorname{fix}(R_{\theta}^5)| = |\operatorname{fix}(R_{\theta}^7)| = 0$.

For $R_{\theta}^2 = R_{2\theta}$, there are two fixed arrangements, which are alternating seatings. So $|\operatorname{fix}(R_{\theta}^2)| = 2$. Similarly, $|\operatorname{fix}(R_{\theta}^6)| = 2$ also.

For $R_{\theta}^4 = R_{4\theta}$, a fixed arrangement is that the opposite seat is possessed by the same tribe. So it suffices to assign the half of the table. Therefore $|\text{fix}(R_{\theta}^4)| = \binom{4}{2} = 6$.

In summary,

$$\frac{1}{|G|} \sum_{\phi \in G} |\operatorname{fix}(\phi)| = \frac{1}{8} (70 + 0 + 2 + 0 + 6 + 0 + 2 + 0) = 10.$$

Therefore there are 10 distinguishable seatings.

- Stating Burnside's theorem: 2 pts.
- Indicating that the permutation group on S is \mathbb{Z}_8 : 4 pts.
- Evaluating the number of all assignments 70: 6 pts.
- Computing the numbers of elements in fixed point sets: +1 pts each.
- Getting the answer 10: 10 pts.