MATH 3005 MIDTERM EXAM 2 SOLUTION

SPRING 2014 - MOON

Write your answer neatly and show steps.
Any electronic devices including calculators, cell phones are not allowed.
(1) Write the definition.
(a) (3 pts) An even permutation.

A permutation σ is called an even permutation, if it is a product of even number of 2-cycles.
(b) (3 pts) An isomorphism of groups.

For two groups G and \bar{G}, a map $\phi: G \rightarrow \bar{G}$ is called an isomorphism if ϕ is one-to-one, onto and for all $x, y \in G, \phi(x y)=\phi(x) \phi(y)$.
(c) (3 pts) For a permutation group G on a set S and $a \in S$, the orbit of a. The $\operatorname{orbit}^{\operatorname{orb}}(G)$ is the set $\{\phi(a) \mid \phi \in G\}$.
(2) Let $\alpha=(134562), \beta=(1243)(56)$ be two permutations in S_{6}.
(a) (3 pts) Compute β^{-1} as a product of disjoint cycles.

$$
\begin{aligned}
\beta=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 4 & 1 & 3 & 6 & 5
\end{array}\right] & \Rightarrow \beta^{-1}=\left[\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
3 & 1 & 4 & 2 & 6 & 5
\end{array}\right] \\
\Rightarrow \beta^{-1} & =(1342)(56)
\end{aligned}
$$

(b) (3 pts) Compute β^{-1} as a product of two cycles.

$$
\beta^{-1}=(1342)(56)=(12)(14)(13)(56)
$$

(c) (4 pts) Compute $\beta \alpha \beta^{-1}$ as a product of disjoint cycles.

$$
\beta \alpha \beta^{-1}=(1243)(56)(134562)(1342)(56)=(136542)
$$

- If (a) is incorrect, then -1 pt from (b) and (c).
(3) (8 pts) Prove that D_{6} is not isomorphic to A_{4}.
D_{6} has an element of order 6 , a rotation by 60°. On the other hand, an even permutation σ in A_{4} is of the form $(a b)(c d)$ or $(a b c)$. So its order is 2 or 3. Therefore D_{6} is not isomorphic to A_{4}.
- Indicating D_{6} has an order 6 element: 3 pts.
- Mentioning that A_{4} doesn't have an order 6 element: 3 pts.
- Explaining why A_{4} has no order 6 element: 2 pts.
(4) (8 pts) Let H be a subgroup of G. Let $a, b \in G$. Prove that $a H=b H$ if and only if $a \in b H$.

Suppose that $a H=b H$. Then $a=a e \in a H=b H$.
Conversely, suppose that $a \in b H$. Then $a=b h$ for some $h \in H$. For any $a k \in a H$ for some $k \in H$. So $a k=b h k \in b H$ and therefore $a H \subset b H$. Because $b=a h^{-1}$, for any $b t \in b H$ with $t \in H, b t=a h^{-1} t \in a H$ and $b H \subset a H$. Therefore we have $a H=b H$.

- Showing that $a H=b H$ implies $a \in b H: 3$ pts.
- Proving that $a H \subset b H$ when $a \in b H: 2$ pts.
- Showing that $b H \subset a H$ when $a \in b H: 3$ pts.
(5) Let G be a group of order 55 .
(a) (4 pts) List all possible orders of a subgroup of G.

For $H \leq G$, by Lagrange's theorem, $|H|||G|=55$. So $| H \mid=1,5,11,55$.

- Excluding 1 or 55: -1 pt.
(b) (5 pts) Suppose that H, K are two distinct subgroups of G of order 11. Show that $H \cap K=\{e\}$.
$H \cap K$ is a subgroup of H. By Lagrange's theorem, $|H \cap K|||H|=11$. So $|H \cap K|=1$ or 11. If $|H \cap K|=11=|K|=|H|$, then $K=H \cap K=H$. Because H and K are two distinct subgroups, $|H \cap K|=1$ so $H \cap K=\{e\}$.
(c) (6 pts) By using (b), show that there is an element $a \in G$ of order 5 .

Pick a nonidentity $x \in G$. Then $|x|=5,11,55$. If $|x|=5, x$ is what we want. If $|x|=55$, then G is cyclic and x^{11} is an order 5 element.
Sol 1. Suppose that there is no order 55 element. If H and K are two distinct subgroups of order 11 , then $|H K|=\frac{|H||K|}{|H \cap K|}=\frac{11^{2}}{1}=121$. But $|H K| \leq$ $|G|=55$ so it is impossible. Therefore there is only one subgroup H of order 11. If we take $x \in G-H$, then $|x|=5$ because if not, $|x|=11$ and $\langle x\rangle$ is a subgroup of order 11 which is different from H.
Sol 2. If $|x|=11$, then $\langle x\rangle$ is an order 11 subgroup of G. Because the intersection of any two order 11 subgroups is only the identity, the number of order 11 elements is $10 k+1$ for some $k \in \mathbb{N}$. Since 55 is not of the form $10 k+1$, there must be an order 5 element.
(6) (10 pts) Four dwarves and four elves are going to discuss how to protect middle earth from the attack of Sauron. On a round table with eight seats, how many distinguishable ways can they be seated?

Let S be the set of all arrangements of four dwarves and four elves on the table. Then the number of elements of S is $\binom{8}{4}=70$. Because if one takes a rotation of the table, then we obtain an indistinguishable arrangement, a permutation group G isomorphic to \mathbb{Z}_{8} permutes S. Let $G=\left\langle R_{\theta}\right\rangle$, where R_{θ} is a counterclockwise rotation by $\theta=\frac{360^{\circ}}{8}=45^{\circ}$.

For id, fix $(\mathrm{id})=S$ and $|\mathrm{fix}(\mathrm{id})|=105$. For R_{θ}, there is no fixed arrangement because for a fixed arrangement, all seats has to be assigned for dwarves only or elves only. So $\left|\operatorname{fix}\left(R_{\theta}\right)\right|=0$. By the same reason, $\left|\operatorname{fix}\left(R_{\theta}^{3}\right)\right|=\left|\operatorname{fix}\left(R_{\theta}^{5}\right)\right|=$ $\left|\operatorname{fix}\left(R_{\theta}^{7}\right)\right|=0$.

For $R_{\theta}^{2}=R_{2 \theta}$, there are two fixed arrangements, which are alternating seatings. So $\left|\operatorname{fix}\left(R_{\theta}^{2}\right)\right|=2$. Similarly, $\left|\operatorname{fix}\left(R_{\theta}^{6}\right)\right|=2$ also.

For $R_{\theta}^{4}=R_{4 \theta}$, a fixed arrangement is that the opposite seat is possessed by the same tribe. So it suffices to assign the half of the table. Therefore \mid fix $\left(R_{\theta}^{4}\right) \mid=$ $\binom{4}{2}=6$.

In summary,

$$
\frac{1}{|G|} \sum_{\phi \in G}|\operatorname{fix}(\phi)|=\frac{1}{8}(70+0+2+0+6+0+2+0)=10 .
$$

Therefore there are 10 distinguishable seatings.

- Stating Burnside's theorem: 2 pts.
- Indicating that the permutation group on S is $\mathbb{Z}_{8}: 4$ pts.
- Evaluating the number of all assignments 70: 6 pts.
- Computing the numbers of elements in fixed point sets: +1 pts each.
- Getting the answer 10: 10 pts .

