Homework 4 Solution

Chapter 4.

1. Find all generators of \mathbb{Z}_6 , \mathbb{Z}_8 , and \mathbb{Z}_{20} .

 \mathbb{Z}_6 , \mathbb{Z}_8 , and \mathbb{Z}_{20} are cyclic groups generated by 1. Because $|\mathbb{Z}_6| = 6$, all generators of \mathbb{Z}_6 are of the form $k \cdot 1 = k$ where $\gcd(6, k) = 1$. So k = 1, 5 and there are two generators of \mathbb{Z}_6 , 1 and 5.

For $k \in \mathbb{Z}_8$, gcd(8, k) = 1 if and only if k = 1, 3, 5, 7. So there are four generators.

Finally, for $k \in \mathbb{Z}_{20}$, gcd(20, k) = 1 if and only if k = 1, 3, 7, 9, 11, 13, 17, 19. They are generators of \mathbb{Z}_{20} .

4. List the elements of the subgroups $\langle 3 \rangle$ and $\langle 15 \rangle$ in \mathbb{Z}_{18} . Let a be a group element of order 18. List the elements of the subgroups $\langle a^3 \rangle$ and $\langle a^{15} \rangle$.

$$\langle 3 \rangle = \{ n \cdot 3 \in \mathbb{Z}_{18} \mid n \in \mathbb{Z} \} = \{ 0, 3, 6, 9, 12, 15 \}$$

$$\langle 15 \rangle = \langle -3 \rangle = \{ n \cdot (-3) \in \mathbb{Z}_{18} \mid n \in \mathbb{Z} \} = \{ n \cdot 3 \in \mathbb{Z}_{18} \mid n \in \mathbb{Z} \} = \langle 3 \rangle = \{ 0, 3, 6, 9, 12, 15 \}$$

$$\langle a^3 \rangle = \{ (a^3)^n = a^{3n} \in \langle a \rangle \mid n \in \mathbb{Z} \} = \{ e, a^3, a^6, a^9, a^{12}, a^{15} \}$$

$$\langle a^{15} \rangle = \langle a^{-3} \rangle = \langle a^3 \rangle = \{ e, a^3, a^6, a^9, a^{12}, a^{15} \}$$

5. List the elements of the subgroups $\langle 3 \rangle$ and $\langle 7 \rangle$ in U(20).

$$3^{2} = 9, 3^{3} = 27 = 7 \mod 20, 3^{4} = 1 \mod 20 \Rightarrow \langle 3 \rangle = \{1, 3, 7, 9\}$$
$$3 \cdot 7 = 21 = 1 \mod 20 \Rightarrow 7 = 3^{-1}$$
$$\langle 7 \rangle = \langle 3^{-1} \rangle = \langle 3 \rangle = \{1, 3, 7, 9\}$$

10. In \mathbb{Z}_{24} , list all generators for the subgroup of order 8. Let $G = \langle a \rangle$ and let |a| = 24. List all generators for the subgroup of order 8.

Because \mathbb{Z}_{24} is a cyclic group of order 24 generated by 1, there is a unique subgroup of order 8, which is $\langle 3 \cdot 1 \rangle = \langle 3 \rangle$. All generators of $\langle 3 \rangle$ are of the form $k \cdot 3$ where $\gcd(8, k) = 1$. Thus k = 1, 3, 5, 7 and the generators of $\langle 3 \rangle$ are 3, 9, 15, 21.

In $\langle a \rangle$, there is a unique subgroup of order 8, which is $\langle a^3 \rangle$. All generators of $\langle a^3 \rangle$ are of the form $(a^3)^k$ where $\gcd(8,k)=1$. Therefore k=1,3,5,7 and the generators of $\langle a^3 \rangle$ are a^3, a^9, a^{15} , and a^{21} .

13. In \mathbb{Z}_{24} , find a generator for $\langle 21 \rangle \cap \langle 10 \rangle$. Suppose that |a| = 24. Find a generator for $\langle a^{21} \rangle \cap \langle a^{10} \rangle$. In general, what is a generator for the subgroup $\langle a^m \rangle \cap \langle a^n \rangle$?

$$\begin{split} \langle 21 \rangle &= \langle \gcd(24,21) \rangle = \langle 3 \rangle = \{0,3,6,9,12,15,18,21\} \\ \langle 10 \rangle &= \langle \gcd(24,10) \rangle = \langle 2 \rangle = \{0,2,4,6,8,10,12,14,16,18,20,22\} \\ &\qquad \langle 21 \rangle \cap \langle 10 \rangle = \{0,6,12,18\} = \langle 6 \rangle \\ &\qquad \langle a^{21} \rangle = \langle a^{\gcd(24,21)} \rangle = \langle a^3 \rangle = \{e,a^3,a^6,a^9,a^{12},a^{15},a^{18},a^{21}\} \\ &\langle a^{10} \rangle = \langle a^{\gcd(24,10)} \rangle = \langle a^2 \rangle = \{e,a^2,a^4,a^6,a^8,a^{10},a^{12},a^{14},a^{16},a^{18},a^{20},a^{22}\} \\ &\qquad \langle a^{21} \rangle \cap \langle a^{10} \rangle = \langle a^3 \rangle \cap \langle a^2 \rangle = \langle a^6 \rangle = \{e,a^6,a^{12},a^{18}\} \end{split}$$

In general, we claim that $\langle a^m \rangle \cap \langle a^n \rangle = \langle^{\operatorname{lcm}(m,n)} \rangle$. First of all, because $m | \operatorname{lcm}(m,n)$, $a^{\operatorname{lcm}(m,n)} \in \langle a^m \rangle$. Similarly, $a^{\operatorname{lcm}(m,n)} \in \langle a^n \rangle$. Therefore $a^{\operatorname{lcm}(m,n)} \in \langle a^m \rangle \cap \langle a^n \rangle$ and hence $\langle a^{\operatorname{lcm}(m,n)} \rangle \subset \langle a^m \rangle \cap \langle a^n \rangle$.

On the other hand, if $b \in \langle a^m \rangle \cap \langle a^n \rangle$, then $b = a^k$ for some k such that m|k and n|k. So $\operatorname{lcm}(m,n)|k$ and $a^k \in \langle a^{\operatorname{lcm}(m,n)} \rangle$. Therefore $\langle a^m \rangle \cap \langle a^n \rangle \subset \langle a^{\operatorname{lcm}(m,n)} \rangle$.

In summary, we obtain $\langle a^m \rangle \cap \langle a^n \rangle = \langle a^{\operatorname{lcm}(m,n)} \rangle = \langle a^{\gcd(24,\operatorname{lcm}(m,n))} \rangle$.

19. List the cyclic subgroups of U(30).

$$U(30) = \{1, 7, 11, 13, 17, 19, 23, 29\}$$

Of course, all cyclic subgroups of U(30) are of the form $\langle a \rangle$ for $a \in U(30)$.

$$\langle 1 \rangle = \{1\}$$

$$7^2 = 19 \mod 30, 7^3 = 13 \mod 30, 7^4 = 1 \mod 30 \Rightarrow \langle 7 \rangle = \{1, 7, 13, 19\}$$

$$11^2 = 1 \mod 30 \Rightarrow \langle 11 \rangle = \{1, 11\}$$

$$17^2 = 19 \mod 30, 17^3 = 23 \mod 30, 17^4 = 1 \mod 30 \Rightarrow \langle 17 \rangle = \{1, 17, 19, 23\}$$

$$29^2 = 1 \mod 30 \Rightarrow \langle 29 \rangle = \{1, 29\}$$

Now $\langle 7 \rangle = \langle 7^3 \rangle = \langle 13 \rangle$ and $\langle 17 \rangle = \langle 17^3 \rangle = \langle 23 \rangle$ because $\gcd(4,3) = 1$. Therefore we have following distinct cyclic subgroups:

$$\langle 1 \rangle, \langle 7 \rangle, \langle 17 \rangle, \langle 11 \rangle, \langle 29 \rangle, \langle 19 \rangle.$$

Note that U(30) itself is not a cyclic group.

33. Determine the subgroup lattice for \mathbb{Z}_{p^2q} where p and q are distinct primes.

There are 6 positive divisors of p^2q , namely, 1, p, p^2 , q, pq, p^2q . For each positive divisor d, there is a cyclic subgroup of \mathbb{Z}_{p^2q} of order d, namely, $\{e\}$, $\langle pq \rangle$, $\langle q \rangle$, $\langle p^2 \rangle$, $\langle p \rangle$, $\langle 1 \rangle = \mathbb{Z}_{p^2q}$, respectively.

The following diagram is the subgroup lattice for \mathbb{Z}_{p^2q} .

40. Let m and n be elements of the group \mathbb{Z} . Find a generator for the group $\langle m \rangle \cap \langle n \rangle$. Let $H = \langle m \rangle \cap \langle n \rangle$. Then H is a subgroup of \mathbb{Z} . Because \mathbb{Z} is a cyclic group, $H = \langle k \rangle$ is also a cyclic group generated by an element k. Because $\langle k \rangle = \langle -k \rangle$, we may assume that k is a nonnegative number.

We claim that $k = \operatorname{lcm}(m,n)$ and $H = \langle \operatorname{lcm}(m,n) \rangle$. Because $k \in \langle m \rangle$, m|k. By the same reason, n|k and $\operatorname{lcm}(m,n)|k$. Thus $k \in \langle \operatorname{lcm}(m,n) \rangle$ and $H = \langle k \rangle \subset \langle \operatorname{lcm}(m,n) \rangle$. On the other hand, if since $m|\operatorname{lcm}(m,n)$, $\operatorname{lcm}(m,n) \in \langle m \rangle$. Similarly, $\operatorname{lcm}(m,n) \in \langle n \rangle$. Therefore $\operatorname{lcm}(m,n) \in \langle m \rangle \cap \langle n \rangle = H$ and $\langle \operatorname{lcm}(m,n) \rangle \subset H$. Therefore we have $H = \langle \operatorname{lcm}(m,n) \rangle$.

41. Suppose that a and b are group elements that commute and have orders m and n. If $\langle a \rangle \cap \langle b \rangle = \{e\}$, prove that the group contains an element whose order is the least common multiple of m and n. Show that this need not be true if a and b do not commute.

We claim that ab is an element with the order lcm(m, n).

If |ab|=d, then $(ab)^d=a^db^d=e$ and $a^d=b^{-d}\in \langle b\rangle$. So $a^d\in \langle a\rangle\cap \langle b\rangle=\{e\}$ and $a^d=e$. Therefore $b^d=e$ as well. Then m|d and n|d and so $\operatorname{lcm}(m,n)|d$. In particular, $d\geq \operatorname{lcm}(m,n)$.

On the other hand, if k = lcm(m, n), then $k = mk_1 = nk_2$ for two positive integers k_1, k_2 .

$$(ab)^k = a^k b^k = a^{mk_1} b^{nk_2} = (a^m)^{k_1} (b^n)^{k_2} = e^{k_1} e^{k_2} = e^{k_1} e^{k_2}$$

So $d = |ab| \le k = \text{lcm}(m, n)$. Therefore d = lcm(m, n).

If a and b do not commute, then there may be no such element. The simplest example is S_3 . Let a=(12) and b=(123). Then |a|=2 and |b|=3. Also $\langle (12)\rangle \cap \langle (123)\rangle = \{e\}$. But because S_3 is not Abelian, it is not cyclic. Therefore there is no element with order $|S_3|=6$.

64. Let a and b belong to a group. If |a| and |b| are relatively prime, show that $\langle a \rangle \cap \langle b \rangle = \{e\}$.

Obviously $\{e\} \subset \langle a \rangle \cap \langle b \rangle$. Let $c \in \langle a \rangle \cap \langle b \rangle$. Then |c|||a| and |c|||b|. So $|c|| \gcd(|a|, |b|) = 1$. In particular, $|c| \leq 1$. But because |c| is positive, |c| = 1. Therefore $c = c^1 = e$ and $\langle a \rangle \cap \langle b \rangle = \{e\}$.

66. Prove that $U(2^n)$ ($n \ge 3$) is not cyclic.

Note that $2^{n-1} + 1 \in U(2^n)$ and $2^n - 1 \in U(2^n)$ are different if $n \ge 3$. For these two elements,

$$(2^{n-1}+1)^2 = 2^{2n-2} + 2 \cdot 2^{n-1} + 1 = 2^{n-2} \cdot 2^n + 2^n + 1 = 1 \mod 2^n$$

and

$$(2^n - 1)^2 = 2^{2n} - 2 \cdot 2^n + 1 = 1 \mod 2^n$$
.

Therefore there are two distinct cyclic subgroups $\{1, 2^{n-1} + 1\}$ and $\{1, 2^n - 1\}$ of order two. For any cyclic group, there is a unique subgroup of order two, $U(2^n)$ is not a cyclic group.

70. Suppose that |x| = n. Find a necessary and sufficient condition on r and s such that $\langle x^r \rangle \subset \langle x^s \rangle$.

Note that $\langle x^r \rangle \subset \langle x^s \rangle$ if and only if $x^r \in \langle x^s \rangle$. Also $\langle x^s \rangle = \langle x^{\gcd(n,s)} \rangle$. Finally, because $\gcd(n,s)$ is a divisor of n, $x^r \in \langle x^{\gcd(n,s)} \rangle$ if and only if $\gcd(n,s)|r$.

72. Let a be a group element such that |a|=48. For each part, find a divisor k of 48 such that

(a)
$$\langle a^{21} \rangle = \langle a^k \rangle$$
;

$$\langle a^{21} \rangle = \langle a^{\gcd(48,21)} \rangle = \langle a^3 \rangle \Rightarrow k = 3$$

(b)
$$\langle a^{14} \rangle = \langle a^k \rangle$$
;

$$\langle a^{14} \rangle = \langle a^{\gcd(48,14)} \rangle = \langle a^2 \rangle \Rightarrow k = 2$$

(c)
$$\langle a^{18} \rangle = \langle a^k \rangle$$
.

$$\langle a^{18} \rangle = \langle a^{\gcd(48,18)} \rangle = \langle a^6 \rangle \Rightarrow k = 6$$

74. Prove that $H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \middle| n \in \mathbb{Z} \right\}$ is a cyclic subgroup of $GL(2, \mathbb{R})$.

We claim that $H=\langle A \rangle$ where $A=\left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right]$. Indeed, because $A\in H$, $\langle A \rangle\subset H$.

Furthermore, for any positive integer k, $A^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$. k = 1 case is obvious. If

$$A^n = \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$
, then

$$A^{n+1} = A^n \cdot A = \left[\begin{array}{cc} 1 & n \\ 0 & 1 \end{array} \right] \cdot \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} 1 & n+1 \\ 0 & 1 \end{array} \right].$$

Therefore by induction we obtain the result.

On the other hand, it is straightforward to check that $A^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$. By

the same idea, one can show that $A^{-k} = \begin{bmatrix} 1 & -k \\ 0 & 1 \end{bmatrix}$ for any positive integer k.

Therefore any elements in H is A^n for some $n\in\mathbb{Z}$ and $H\subset\langle A\rangle$. Therefore $H=\langle A\rangle$.